Hasitha16 commited on
Commit
555c12b
·
verified ·
1 Parent(s): fc94552

Upload model.py

Browse files
Files changed (1) hide show
  1. model.py +143 -0
model.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache"
3
+ os.environ["HF_HOME"] = "/tmp/hf-home"
4
+
5
+ import nltk
6
+ nltk.download("punkt", download_dir="/tmp/nltk_data")
7
+
8
+ from sklearn.feature_extraction.text import TfidfVectorizer
9
+ from sklearn.cluster import KMeans
10
+ from sklearn.metrics.pairwise import cosine_similarity
11
+ from nltk.tokenize import sent_tokenize
12
+ from transformers import pipeline
13
+ import numpy as np
14
+ import logging
15
+
16
+ # === Pipelines ===
17
+ summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
18
+ qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
19
+ emotion_pipeline = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", top_k=1)
20
+
21
+ # === Brief Summarization ===
22
+ def summarize_review(text, max_len=80, min_len=20):
23
+ try:
24
+ return summarizer(text, max_length=max_len, min_length=min_len, do_sample=False)[0]["summary_text"]
25
+ except Exception as e:
26
+ logging.warning(f"Summarization fallback used: {e}")
27
+ return text
28
+
29
+ # === Smart Summarization with Clustering ===
30
+ def smart_summarize(text, n_clusters=1):
31
+ try:
32
+ sentences = sent_tokenize(text)
33
+ if len(sentences) <= 1:
34
+ return text
35
+ tfidf = TfidfVectorizer(stop_words="english")
36
+ tfidf_matrix = tfidf.fit_transform(sentences)
37
+ if len(sentences) <= n_clusters:
38
+ return " ".join(sentences)
39
+ kmeans = KMeans(n_clusters=n_clusters, random_state=42).fit(tfidf_matrix)
40
+ summary_sentences = []
41
+ for i in range(n_clusters):
42
+ idx = np.where(kmeans.labels_ == i)[0]
43
+ if not len(idx):
44
+ continue
45
+ avg_vector = np.asarray(tfidf_matrix[idx].mean(axis=0))
46
+ sim = cosine_similarity(avg_vector, tfidf_matrix[idx].toarray())
47
+ most_representative = sentences[idx[np.argmax(sim)]]
48
+ summary_sentences.append(most_representative)
49
+ return " ".join(sorted(summary_sentences, key=sentences.index))
50
+ except Exception as e:
51
+ logging.error(f"Smart summarize error: {e}")
52
+ return text
53
+
54
+ # === Emotion Detection ===
55
+ def detect_emotion(text):
56
+ try:
57
+ result = emotion_pipeline(text)[0]
58
+ return result["label"]
59
+ except Exception as e:
60
+ logging.warning(f"Emotion detection failed: {e}")
61
+ return "neutral"
62
+
63
+ # === Follow-up Q&A (Flexible for list or str) ===
64
+ def answer_followup(text, question, verbosity="brief"):
65
+ try:
66
+ if isinstance(question, list):
67
+ answers = []
68
+ for q in question:
69
+ response = qa_pipeline({"question": q, "context": text})
70
+ ans = response.get("answer", "")
71
+ if verbosity.lower() == "detailed":
72
+ answers.append(f"**{q}** → {ans}")
73
+ else:
74
+ answers.append(ans)
75
+ return answers
76
+ else:
77
+ response = qa_pipeline({"question": question, "context": text})
78
+ ans = response.get("answer", "")
79
+ return f"**{question}** → {ans}" if verbosity.lower() == "detailed" else ans
80
+ except Exception as e:
81
+ logging.warning(f"Follow-up error: {e}")
82
+ return "Sorry, I couldn't generate a follow-up answer."
83
+
84
+ # === Fast follow-up (used for direct /followup route) ===
85
+ def answer_only(text, question):
86
+ try:
87
+ if not question:
88
+ return "No question provided."
89
+ return qa_pipeline({"question": question, "context": text}).get("answer", "No answer found.")
90
+ except Exception as e:
91
+ logging.warning(f"Answer-only failed: {e}")
92
+ return "Q&A failed."
93
+
94
+ # === Optional Explanation Generator ===
95
+ def generate_explanation(text):
96
+ try:
97
+ explanation = summarizer(text, max_length=60, min_length=20, do_sample=False)[0]["summary_text"]
98
+ return f"🧠 This review can be explained as: {explanation}"
99
+ except Exception as e:
100
+ logging.warning(f"Explanation failed: {e}")
101
+ return "⚠️ Explanation could not be generated."
102
+
103
+ # === Industry Detector ===
104
+ def detect_industry(text):
105
+ text = text.lower()
106
+ if any(k in text for k in ["doctor", "hospital", "health", "pill", "med"]):
107
+ return "Healthcare"
108
+ if any(k in text for k in ["flight", "hotel", "trip", "booking"]):
109
+ return "Travel"
110
+ if any(k in text for k in ["bank", "loan", "credit", "payment"]):
111
+ return "Banking"
112
+ if any(k in text for k in ["gym", "trainer", "fitness", "workout"]):
113
+ return "Fitness"
114
+ if any(k in text for k in ["movie", "series", "stream", "video"]):
115
+ return "Entertainment"
116
+ if any(k in text for k in ["game", "gaming", "console"]):
117
+ return "Gaming"
118
+ if any(k in text for k in ["food", "delivery", "restaurant", "order"]):
119
+ return "Food Delivery"
120
+ if any(k in text for k in ["school", "university", "teacher", "course"]):
121
+ return "Education"
122
+ if any(k in text for k in ["insurance", "policy", "claim"]):
123
+ return "Insurance"
124
+ if any(k in text for k in ["property", "rent", "apartment", "house"]):
125
+ return "Real Estate"
126
+ if any(k in text for k in ["shop", "buy", "product", "phone", "amazon", "flipkart"]):
127
+ return "E-commerce"
128
+ return "Generic"
129
+
130
+ # === Product Category Detector ===
131
+ def detect_product_category(text):
132
+ text = text.lower()
133
+ if any(k in text for k in ["mobile", "smartphone", "iphone", "samsung", "phone"]):
134
+ return "Mobile Devices"
135
+ if any(k in text for k in ["laptop", "macbook", "notebook", "chromebook"]):
136
+ return "Laptops"
137
+ if any(k in text for k in ["tv", "refrigerator", "microwave", "washer"]):
138
+ return "Home Appliances"
139
+ if any(k in text for k in ["watch", "band", "fitbit", "wearable"]):
140
+ return "Wearables"
141
+ if any(k in text for k in ["app", "portal", "site", "website"]):
142
+ return "Web App"
143
+ return "General"