Spaces:
Sleeping
Sleeping
Update frontend.py
Browse files- frontend.py +3 -6
frontend.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
# [STREAMLIT FRONTEND - Product Feedback AI Assistant]
|
2 |
-
|
3 |
import streamlit as st
|
4 |
import requests
|
5 |
import pandas as pd
|
@@ -9,7 +7,7 @@ from io import BytesIO
|
|
9 |
import os
|
10 |
import plotly.express as px
|
11 |
|
12 |
-
st.set_page_config(page_title="
|
13 |
|
14 |
if os.path.exists("logo.png"):
|
15 |
st.image("logo.png", width=180)
|
@@ -84,8 +82,8 @@ tab1, tab2 = st.tabs(["π§ Analyze Review", "π Bulk Reviews"])
|
|
84 |
|
85 |
# === SINGLE REVIEW ===
|
86 |
with tab1:
|
87 |
-
st.title("π Product Feedback
|
88 |
-
st.markdown("
|
89 |
|
90 |
review = st.text_area("π Enter Customer Feedback", value=st.session_state.review, height=180)
|
91 |
st.session_state.review = review
|
@@ -145,7 +143,6 @@ with tab1:
|
|
145 |
color = "π΄" if risk == "High Risk" else "π’"
|
146 |
st.metric("π¨ Churn Risk", f"{color} {risk}")
|
147 |
|
148 |
-
|
149 |
if "pain_points" in data and data["pain_points"]:
|
150 |
st.error("π Pain Points: " + ", ".join(data["pain_points"]))
|
151 |
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
import pandas as pd
|
|
|
7 |
import os
|
8 |
import plotly.express as px
|
9 |
|
10 |
+
st.set_page_config(page_title="ChurnSight AI", page_icon="π§ ", layout="wide")
|
11 |
|
12 |
if os.path.exists("logo.png"):
|
13 |
st.image("logo.png", width=180)
|
|
|
82 |
|
83 |
# === SINGLE REVIEW ===
|
84 |
with tab1:
|
85 |
+
st.title("π ChurnSight AI β Product Feedback Assistant")
|
86 |
+
st.markdown("Analyze feedback to detect churn risk, extract pain points, and support product decisions.")
|
87 |
|
88 |
review = st.text_area("π Enter Customer Feedback", value=st.session_state.review, height=180)
|
89 |
st.session_state.review = review
|
|
|
143 |
color = "π΄" if risk == "High Risk" else "π’"
|
144 |
st.metric("π¨ Churn Risk", f"{color} {risk}")
|
145 |
|
|
|
146 |
if "pain_points" in data and data["pain_points"]:
|
147 |
st.error("π Pain Points: " + ", ".join(data["pain_points"]))
|
148 |
|