Spaces:
Running
Running
Delete frontend.py
Browse files- frontend.py +0 -225
frontend.py
DELETED
@@ -1,225 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import requests
|
3 |
-
import pandas as pd
|
4 |
-
from gtts import gTTS
|
5 |
-
import base64
|
6 |
-
from io import BytesIO
|
7 |
-
from PIL import Image
|
8 |
-
import os
|
9 |
-
import plotly.express as px
|
10 |
-
|
11 |
-
st.set_page_config(page_title="NeuroPulse AI", page_icon="🧠", layout="wide")
|
12 |
-
|
13 |
-
# Load logo
|
14 |
-
logo_path = "logo.png"
|
15 |
-
if os.path.exists(logo_path):
|
16 |
-
st.image(logo_path, width=180)
|
17 |
-
|
18 |
-
# Session State defaults
|
19 |
-
if "review" not in st.session_state:
|
20 |
-
st.session_state.review = ""
|
21 |
-
if "dark_mode" not in st.session_state:
|
22 |
-
st.session_state.dark_mode = False
|
23 |
-
if "intelligence_mode" not in st.session_state:
|
24 |
-
st.session_state.intelligence_mode = True
|
25 |
-
|
26 |
-
# Apply Dark Mode Styling
|
27 |
-
if st.session_state.dark_mode:
|
28 |
-
st.markdown("""
|
29 |
-
<style>
|
30 |
-
html, body, [class*="st-"] {
|
31 |
-
background-color: #121212;
|
32 |
-
color: #f5f5f5;
|
33 |
-
}
|
34 |
-
.stTextInput > div > div > input,
|
35 |
-
.stTextArea > div > textarea,
|
36 |
-
.stSelectbox div div,
|
37 |
-
.stDownloadButton > button,
|
38 |
-
.stButton > button {
|
39 |
-
background-color: #1e1e1e;
|
40 |
-
color: white;
|
41 |
-
}
|
42 |
-
</style>
|
43 |
-
""", unsafe_allow_html=True)
|
44 |
-
|
45 |
-
# Sidebar controls
|
46 |
-
with st.sidebar:
|
47 |
-
st.header("⚙️ Global Settings")
|
48 |
-
st.session_state.dark_mode = st.toggle("🌙 Dark Mode", value=st.session_state.dark_mode)
|
49 |
-
st.session_state.intelligence_mode = st.toggle("🧠 Intelligence Mode", value=st.session_state.intelligence_mode)
|
50 |
-
|
51 |
-
api_token = st.text_input("🔐 API Token", type="password")
|
52 |
-
backend_url = st.text_input("🌐 Backend URL", value="http://localhost:8000")
|
53 |
-
|
54 |
-
sentiment_model = st.selectbox("📊 Sentiment Model", [
|
55 |
-
"distilbert-base-uncased-finetuned-sst-2-english",
|
56 |
-
"nlptown/bert-base-multilingual-uncased-sentiment"
|
57 |
-
])
|
58 |
-
|
59 |
-
industry = st.selectbox("🏭 Industry", [
|
60 |
-
"Auto-detect", "Generic", "E-commerce", "Healthcare", "Education", "Travel", "Banking", "Insurance",
|
61 |
-
"Gaming", "Food Delivery", "Real Estate", "Fitness", "Entertainment"
|
62 |
-
])
|
63 |
-
|
64 |
-
product_category = st.selectbox("🧩 Product Category", [
|
65 |
-
"Auto-detect", "General", "Mobile Devices", "Laptops", "Healthcare Devices", "Banking App",
|
66 |
-
"Travel Service", "Educational Tool", "Insurance Portal", "Streaming App", "Wearables",
|
67 |
-
"Home Appliances", "Food Apps"
|
68 |
-
])
|
69 |
-
|
70 |
-
use_aspects = st.checkbox("🔬 Enable Aspect Analysis")
|
71 |
-
use_smart_summary = st.checkbox("🧠 Smart Summary (Single)")
|
72 |
-
use_smart_summary_bulk = st.checkbox("🧠 Smart Summary for Bulk")
|
73 |
-
|
74 |
-
verbosity = st.radio("🗣️ Response Style", ["Brief", "Detailed"])
|
75 |
-
follow_up = st.text_input("🔁 Follow-up Question")
|
76 |
-
voice_lang = st.selectbox("🔈 Voice Language", ["en", "fr", "es", "de", "hi", "zh"])
|
77 |
-
|
78 |
-
# Text-to-Speech
|
79 |
-
def speak(text, lang='en'):
|
80 |
-
tts = gTTS(text, lang=lang)
|
81 |
-
mp3 = BytesIO()
|
82 |
-
tts.write_to_fp(mp3)
|
83 |
-
b64 = base64.b64encode(mp3.getvalue()).decode()
|
84 |
-
st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True)
|
85 |
-
mp3.seek(0)
|
86 |
-
return mp3
|
87 |
-
|
88 |
-
tab1, tab2 = st.tabs(["🧠 Single Review", "📚 Bulk CSV"])
|
89 |
-
|
90 |
-
# --- SINGLE REVIEW ---
|
91 |
-
with tab1:
|
92 |
-
st.title("🧠 NeuroPulse AI – Multimodal Review Analyzer")
|
93 |
-
st.markdown("<div style='font-size:16px;color:#888;'>Minimum 50–100 words recommended.</div>", unsafe_allow_html=True)
|
94 |
-
|
95 |
-
review = st.text_area("📝 Enter Review", value=st.session_state.review, height=180)
|
96 |
-
|
97 |
-
col1, col2, col3 = st.columns(3)
|
98 |
-
with col1:
|
99 |
-
analyze = st.button("🔍 Analyze", use_container_width=True, disabled=not api_token)
|
100 |
-
with col2:
|
101 |
-
if st.button("🎲 Example", use_container_width=True):
|
102 |
-
st.session_state.review = "I love this phone! Super fast performance, great battery, and smooth UI."
|
103 |
-
st.rerun()
|
104 |
-
with col3:
|
105 |
-
if st.button("🧹 Clear", use_container_width=True):
|
106 |
-
st.session_state.review = ""
|
107 |
-
st.rerun()
|
108 |
-
|
109 |
-
if analyze and review:
|
110 |
-
if len(review.split()) < 50:
|
111 |
-
st.warning("⚠️ Please enter at least 50 words.")
|
112 |
-
else:
|
113 |
-
with st.spinner("Analyzing..."):
|
114 |
-
try:
|
115 |
-
payload = {
|
116 |
-
"text": review,
|
117 |
-
"model": sentiment_model,
|
118 |
-
"industry": industry,
|
119 |
-
"aspects": use_aspects,
|
120 |
-
"follow_up": follow_up,
|
121 |
-
"product_category": product_category,
|
122 |
-
"verbosity": verbosity,
|
123 |
-
"intelligence": st.session_state.intelligence_mode
|
124 |
-
}
|
125 |
-
headers = {"x-api-key": api_token}
|
126 |
-
params = {"smart": "1"} if use_smart_summary else {}
|
127 |
-
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers, params=params)
|
128 |
-
|
129 |
-
if res.status_code == 200:
|
130 |
-
data = res.json()
|
131 |
-
st.success("✅ Analysis Complete")
|
132 |
-
st.subheader("📌 Summary")
|
133 |
-
st.info(data["summary"])
|
134 |
-
st.caption(f"🧠 Summary Type: {'Smart' if use_smart_summary else 'Standard'} | {verbosity} Response")
|
135 |
-
st.markdown(f"**Context:** `{data['industry']}` | `{data['product_category']}` | `Web`")
|
136 |
-
|
137 |
-
st.subheader("🔊 Audio")
|
138 |
-
audio = speak(data["summary"], lang=voice_lang)
|
139 |
-
st.download_button("⬇️ Download Summary Audio", audio.read(), "summary.mp3", mime="audio/mp3")
|
140 |
-
|
141 |
-
st.metric("📊 Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
|
142 |
-
st.info(f"💢 Emotion: {data['emotion']}")
|
143 |
-
|
144 |
-
if data.get("aspects"):
|
145 |
-
st.subheader("🔍 Aspects")
|
146 |
-
for a in data["aspects"]:
|
147 |
-
st.write(f"🔹 {a['aspect']}: {a['sentiment']} ({a['score']:.2%})")
|
148 |
-
|
149 |
-
if data.get("follow_up"):
|
150 |
-
st.subheader("🔁 Follow-Up Answer")
|
151 |
-
st.warning(data["follow_up"])
|
152 |
-
|
153 |
-
if data.get("explanation"):
|
154 |
-
st.subheader("🧮 Explain This")
|
155 |
-
st.markdown(data["explanation"])
|
156 |
-
else:
|
157 |
-
st.error(f"❌ API Error {res.status_code}: {res.json().get('detail', 'Unknown error')}")
|
158 |
-
|
159 |
-
except Exception as e:
|
160 |
-
st.error(f"🚫 Exception occurred: {e}")
|
161 |
-
|
162 |
-
# --- BULK ---
|
163 |
-
with tab2:
|
164 |
-
st.title("📚 Bulk CSV Upload")
|
165 |
-
st.markdown("""
|
166 |
-
Upload a CSV with the following columns:<br>
|
167 |
-
<code>review</code> (required), <code>industry</code>, <code>product_category</code>, <code>device</code> (optional)
|
168 |
-
""", unsafe_allow_html=True)
|
169 |
-
|
170 |
-
with st.expander("📄 Sample CSV"):
|
171 |
-
with open("sample_reviews.csv", "rb") as f:
|
172 |
-
st.download_button("⬇️ Download sample CSV", f, file_name="sample_reviews.csv")
|
173 |
-
|
174 |
-
uploaded_file = st.file_uploader("📁 Upload your CSV", type="csv")
|
175 |
-
|
176 |
-
if uploaded_file and api_token:
|
177 |
-
try:
|
178 |
-
df = pd.read_csv(uploaded_file)
|
179 |
-
if "review" not in df.columns:
|
180 |
-
st.error("CSV must contain a `review` column.")
|
181 |
-
else:
|
182 |
-
st.success(f"✅ Loaded {len(df)} reviews")
|
183 |
-
for col in ["industry", "product_category", "device"]:
|
184 |
-
if col not in df.columns:
|
185 |
-
df[col] = ["Auto-detect"] * len(df)
|
186 |
-
df[col] = df[col].fillna("Auto-detect").astype(str)
|
187 |
-
|
188 |
-
# Replace "Auto-detect" with fallback/default
|
189 |
-
df["industry"] = df["industry"].apply(lambda x: "Generic" if x.lower() == "auto-detect" else x)
|
190 |
-
df["product_category"] = df["product_category"].apply(lambda x: "General" if x.lower() == "auto-detect" else x)
|
191 |
-
df["device"] = df["device"].apply(lambda x: "Web" if x.lower() == "auto-detect" else x)
|
192 |
-
|
193 |
-
if st.button("📊 Analyze Bulk Reviews", use_container_width=True):
|
194 |
-
with st.spinner("Processing..."):
|
195 |
-
try:
|
196 |
-
payload = {
|
197 |
-
"reviews": df["review"].tolist(),
|
198 |
-
"model": sentiment_model,
|
199 |
-
"aspects": use_aspects,
|
200 |
-
"industry": df["industry"].tolist(),
|
201 |
-
"product_category": df["product_category"].tolist(),
|
202 |
-
"device": df["device"].tolist(),
|
203 |
-
"intelligence": st.session_state.intelligence_mode,
|
204 |
-
}
|
205 |
-
headers = {"x-api-key": api_token}
|
206 |
-
params = {"smart": "1"} if use_smart_summary_bulk else {}
|
207 |
-
res = requests.post(f"{backend_url}/bulk/", json=payload, headers=headers, params=params)
|
208 |
-
|
209 |
-
if res.status_code == 200:
|
210 |
-
results = pd.DataFrame(res.json()["results"])
|
211 |
-
st.dataframe(results)
|
212 |
-
|
213 |
-
if "sentiment" in results:
|
214 |
-
fig = px.pie(results, names="sentiment", title="Sentiment Distribution")
|
215 |
-
st.plotly_chart(fig)
|
216 |
-
|
217 |
-
st.download_button("⬇️ Download Results CSV", results.to_csv(index=False), "results.csv", mime="text/csv")
|
218 |
-
else:
|
219 |
-
st.error(f"❌ Bulk Error {res.status_code}: {res.json().get('detail', 'Unknown error')}")
|
220 |
-
except Exception as e:
|
221 |
-
st.error(f"🚨 Processing Error: {e}")
|
222 |
-
except Exception as e:
|
223 |
-
st.error(f"❌ File Read Error: {e}")
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|