Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -1,21 +1,19 @@
|
|
1 |
-
from fastapi import FastAPI, Request, Header, HTTPException
|
2 |
from fastapi.responses import HTMLResponse, JSONResponse
|
3 |
-
from fastapi.openapi.utils import get_openapi
|
4 |
from fastapi.openapi.docs import get_swagger_ui_html
|
5 |
from fastapi.middleware.cors import CORSMiddleware
|
6 |
from pydantic import BaseModel
|
7 |
-
from model import answer_only
|
8 |
-
from fastapi import Query
|
9 |
from transformers import pipeline
|
10 |
-
import
|
|
|
|
|
11 |
from model import (
|
12 |
-
summarize_review, smart_summarize, detect_industry,
|
13 |
-
detect_product_category, answer_followup,
|
14 |
)
|
15 |
-
from typing import Optional, List, Union
|
16 |
|
17 |
app = FastAPI(
|
18 |
-
title="
|
19 |
description="Multilingual GenAI for smarter feedback — summarization, sentiment, emotion, aspects, Q&A and tags.",
|
20 |
version="2025.1.0",
|
21 |
openapi_url="/openapi.json",
|
@@ -31,24 +29,29 @@ app.add_middleware(
|
|
31 |
allow_headers=["*"],
|
32 |
)
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
|
39 |
@app.get("/docs", include_in_schema=False)
|
40 |
def custom_swagger_ui():
|
41 |
return get_swagger_ui_html(
|
42 |
openapi_url=app.openapi_url,
|
43 |
-
title="
|
44 |
swagger_favicon_url="https://cdn-icons-png.flaticon.com/512/3794/3794616.png",
|
45 |
swagger_js_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui-bundle.js",
|
46 |
swagger_css_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui.css",
|
47 |
)
|
48 |
|
49 |
-
@app.
|
50 |
-
def
|
51 |
-
|
|
|
|
|
|
|
52 |
|
53 |
class ReviewInput(BaseModel):
|
54 |
text: str
|
@@ -69,16 +72,22 @@ class BulkReviewInput(BaseModel):
|
|
69 |
product_category: Optional[List[str]] = None
|
70 |
device: Optional[List[str]] = None
|
71 |
follow_up: Optional[List[Union[str, List[str]]]] = None
|
72 |
-
intelligence: Optional[bool] = False
|
73 |
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
|
77 |
def auto_fill(value: Optional[str], fallback: str) -> str:
|
78 |
if not value or value.lower() == "auto-detect":
|
79 |
return fallback
|
80 |
return value
|
81 |
|
|
|
|
|
82 |
@app.post("/analyze/")
|
83 |
async def analyze(data: ReviewInput, x_api_key: str = Header(None)):
|
84 |
if x_api_key and x_api_key != VALID_API_KEY:
|
@@ -103,14 +112,13 @@ async def analyze(data: ReviewInput, x_api_key: str = Header(None)):
|
|
103 |
|
104 |
industry = detect_industry(data.text) if not data.industry or "auto" in data.industry.lower() else data.industry
|
105 |
product_category = detect_product_category(data.text) if not data.product_category or "auto" in data.product_category.lower() else data.product_category
|
106 |
-
device = "Web"
|
107 |
|
108 |
response = {
|
109 |
"summary": summary,
|
110 |
"sentiment": sentiment,
|
111 |
"emotion": emotion,
|
112 |
"product_category": product_category,
|
113 |
-
"device":
|
114 |
"industry": industry
|
115 |
}
|
116 |
|
@@ -123,6 +131,21 @@ async def analyze(data: ReviewInput, x_api_key: str = Header(None)):
|
|
123 |
logging.error(f"🔥 Unexpected analysis failure: {traceback.format_exc()}")
|
124 |
raise HTTPException(status_code=500, detail="Internal Server Error during analysis. Please contact support.")
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
@app.post("/bulk/")
|
127 |
async def bulk_analyze(data: BulkReviewInput, token: str = Query(None)):
|
128 |
if token != VALID_API_KEY:
|
@@ -170,24 +193,3 @@ async def bulk_analyze(data: BulkReviewInput, token: str = Query(None)):
|
|
170 |
except Exception as e:
|
171 |
logging.error(f"🔥 Bulk processing failed: {traceback.format_exc()}")
|
172 |
raise HTTPException(status_code=500, detail="Failed to analyze bulk reviews")
|
173 |
-
from model import answer_only
|
174 |
-
|
175 |
-
class FollowUpRequest(BaseModel):
|
176 |
-
text: str
|
177 |
-
question: str
|
178 |
-
verbosity: Optional[str] = "brief"
|
179 |
-
|
180 |
-
@app.post("/followup/")
|
181 |
-
async def followup(request: FollowUpRequest, x_api_key: str = Header(None)):
|
182 |
-
if x_api_key and x_api_key != VALID_API_KEY:
|
183 |
-
raise HTTPException(status_code=401, detail="Invalid API key")
|
184 |
-
|
185 |
-
if not request.question or len(request.text.split()) < 10:
|
186 |
-
raise HTTPException(status_code=400, detail="Question or text is too short.")
|
187 |
-
|
188 |
-
try:
|
189 |
-
answer = answer_only(request.text, request.question)
|
190 |
-
return {"answer": answer}
|
191 |
-
except Exception as e:
|
192 |
-
logging.error(f"❌ Follow-up failed: {traceback.format_exc()}")
|
193 |
-
raise HTTPException(status_code=500, detail="Internal Server Error during follow-up.")
|
|
|
1 |
+
from fastapi import FastAPI, Request, Header, HTTPException, Query
|
2 |
from fastapi.responses import HTMLResponse, JSONResponse
|
|
|
3 |
from fastapi.openapi.docs import get_swagger_ui_html
|
4 |
from fastapi.middleware.cors import CORSMiddleware
|
5 |
from pydantic import BaseModel
|
|
|
|
|
6 |
from transformers import pipeline
|
7 |
+
import logging, traceback
|
8 |
+
from typing import Optional, List, Union
|
9 |
+
|
10 |
from model import (
|
11 |
+
summarize_review, smart_summarize, detect_industry,
|
12 |
+
detect_product_category, detect_emotion, answer_followup, answer_only
|
13 |
)
|
|
|
14 |
|
15 |
app = FastAPI(
|
16 |
+
title="🧠 NeuroPulse AI",
|
17 |
description="Multilingual GenAI for smarter feedback — summarization, sentiment, emotion, aspects, Q&A and tags.",
|
18 |
version="2025.1.0",
|
19 |
openapi_url="/openapi.json",
|
|
|
29 |
allow_headers=["*"],
|
30 |
)
|
31 |
|
32 |
+
logging.basicConfig(level=logging.INFO)
|
33 |
+
VALID_API_KEY = "my-secret-key"
|
34 |
+
|
35 |
+
@app.get("/", response_class=HTMLResponse)
|
36 |
+
def root():
|
37 |
+
return "<h1>NeuroPulse AI Backend is Running</h1>"
|
38 |
|
39 |
@app.get("/docs", include_in_schema=False)
|
40 |
def custom_swagger_ui():
|
41 |
return get_swagger_ui_html(
|
42 |
openapi_url=app.openapi_url,
|
43 |
+
title="🧠 Swagger UI - NeuroPulse AI",
|
44 |
swagger_favicon_url="https://cdn-icons-png.flaticon.com/512/3794/3794616.png",
|
45 |
swagger_js_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui-bundle.js",
|
46 |
swagger_css_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui.css",
|
47 |
)
|
48 |
|
49 |
+
@app.exception_handler(Exception)
|
50 |
+
async def exception_handler(request: Request, exc: Exception):
|
51 |
+
logging.error(f"Unhandled Exception: {traceback.format_exc()}")
|
52 |
+
return JSONResponse(status_code=500, content={"detail": "Internal Server Error. Please contact support."})
|
53 |
+
|
54 |
+
# ==== SCHEMAS ====
|
55 |
|
56 |
class ReviewInput(BaseModel):
|
57 |
text: str
|
|
|
72 |
product_category: Optional[List[str]] = None
|
73 |
device: Optional[List[str]] = None
|
74 |
follow_up: Optional[List[Union[str, List[str]]]] = None
|
75 |
+
intelligence: Optional[bool] = False
|
76 |
|
77 |
+
class FollowUpRequest(BaseModel):
|
78 |
+
text: str
|
79 |
+
question: str
|
80 |
+
verbosity: Optional[str] = "brief"
|
81 |
+
|
82 |
+
# ==== HELPERS ====
|
83 |
|
84 |
def auto_fill(value: Optional[str], fallback: str) -> str:
|
85 |
if not value or value.lower() == "auto-detect":
|
86 |
return fallback
|
87 |
return value
|
88 |
|
89 |
+
# ==== ENDPOINTS ====
|
90 |
+
|
91 |
@app.post("/analyze/")
|
92 |
async def analyze(data: ReviewInput, x_api_key: str = Header(None)):
|
93 |
if x_api_key and x_api_key != VALID_API_KEY:
|
|
|
112 |
|
113 |
industry = detect_industry(data.text) if not data.industry or "auto" in data.industry.lower() else data.industry
|
114 |
product_category = detect_product_category(data.text) if not data.product_category or "auto" in data.product_category.lower() else data.product_category
|
|
|
115 |
|
116 |
response = {
|
117 |
"summary": summary,
|
118 |
"sentiment": sentiment,
|
119 |
"emotion": emotion,
|
120 |
"product_category": product_category,
|
121 |
+
"device": "Web",
|
122 |
"industry": industry
|
123 |
}
|
124 |
|
|
|
131 |
logging.error(f"🔥 Unexpected analysis failure: {traceback.format_exc()}")
|
132 |
raise HTTPException(status_code=500, detail="Internal Server Error during analysis. Please contact support.")
|
133 |
|
134 |
+
@app.post("/followup/")
|
135 |
+
async def followup(request: FollowUpRequest, x_api_key: str = Header(None)):
|
136 |
+
if x_api_key and x_api_key != VALID_API_KEY:
|
137 |
+
raise HTTPException(status_code=401, detail="Invalid API key")
|
138 |
+
|
139 |
+
if not request.question or len(request.text.split()) < 10:
|
140 |
+
raise HTTPException(status_code=400, detail="Question or text is too short.")
|
141 |
+
|
142 |
+
try:
|
143 |
+
answer = answer_only(request.text, request.question)
|
144 |
+
return {"answer": answer}
|
145 |
+
except Exception as e:
|
146 |
+
logging.error(f"�� Follow-up failed: {traceback.format_exc()}")
|
147 |
+
raise HTTPException(status_code=500, detail="Internal Server Error during follow-up.")
|
148 |
+
|
149 |
@app.post("/bulk/")
|
150 |
async def bulk_analyze(data: BulkReviewInput, token: str = Query(None)):
|
151 |
if token != VALID_API_KEY:
|
|
|
193 |
except Exception as e:
|
194 |
logging.error(f"🔥 Bulk processing failed: {traceback.format_exc()}")
|
195 |
raise HTTPException(status_code=500, detail="Failed to analyze bulk reviews")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|