Spaces:
Sleeping
Sleeping
Update model.py
Browse files
model.py
CHANGED
@@ -12,6 +12,7 @@ from nltk.tokenize import sent_tokenize
|
|
12 |
from transformers import pipeline
|
13 |
import numpy as np
|
14 |
import logging
|
|
|
15 |
|
16 |
# === Pipelines ===
|
17 |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
|
@@ -60,7 +61,7 @@ def detect_emotion(text):
|
|
60 |
logging.warning(f"Emotion detection failed: {e}")
|
61 |
return "neutral"
|
62 |
|
63 |
-
# === Follow-up Q&A
|
64 |
def answer_followup(text, question, verbosity="brief"):
|
65 |
try:
|
66 |
if isinstance(question, list):
|
@@ -68,10 +69,7 @@ def answer_followup(text, question, verbosity="brief"):
|
|
68 |
for q in question:
|
69 |
response = qa_pipeline({"question": q, "context": text})
|
70 |
ans = response.get("answer", "")
|
71 |
-
if verbosity.lower() == "detailed"
|
72 |
-
answers.append(f"**{q}** → {ans}")
|
73 |
-
else:
|
74 |
-
answers.append(ans)
|
75 |
return answers
|
76 |
else:
|
77 |
response = qa_pipeline({"question": question, "context": text})
|
@@ -81,7 +79,6 @@ def answer_followup(text, question, verbosity="brief"):
|
|
81 |
logging.warning(f"Follow-up error: {e}")
|
82 |
return "Sorry, I couldn't generate a follow-up answer."
|
83 |
|
84 |
-
# === Fast follow-up (used for direct /followup route) ===
|
85 |
def answer_only(text, question):
|
86 |
try:
|
87 |
if not question:
|
@@ -91,7 +88,7 @@ def answer_only(text, question):
|
|
91 |
logging.warning(f"Answer-only failed: {e}")
|
92 |
return "Q&A failed."
|
93 |
|
94 |
-
# ===
|
95 |
def generate_explanation(text):
|
96 |
try:
|
97 |
explanation = summarizer(text, max_length=60, min_length=20, do_sample=False)[0]["summary_text"]
|
@@ -100,44 +97,43 @@ def generate_explanation(text):
|
|
100 |
logging.warning(f"Explanation failed: {e}")
|
101 |
return "⚠️ Explanation could not be generated."
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
# === Industry Detector ===
|
104 |
def detect_industry(text):
|
105 |
text = text.lower()
|
106 |
-
if any(k in text for k in ["doctor", "hospital", "health", "pill", "med"]):
|
107 |
-
|
108 |
-
if any(k in text for k in ["
|
109 |
-
|
110 |
-
if any(k in text for k in ["
|
111 |
-
|
112 |
-
if any(k in text for k in ["
|
113 |
-
|
114 |
-
if any(k in text for k in ["
|
115 |
-
|
116 |
-
if any(k in text for k in ["
|
117 |
-
return "Gaming"
|
118 |
-
if any(k in text for k in ["food", "delivery", "restaurant", "order"]):
|
119 |
-
return "Food Delivery"
|
120 |
-
if any(k in text for k in ["school", "university", "teacher", "course"]):
|
121 |
-
return "Education"
|
122 |
-
if any(k in text for k in ["insurance", "policy", "claim"]):
|
123 |
-
return "Insurance"
|
124 |
-
if any(k in text for k in ["property", "rent", "apartment", "house"]):
|
125 |
-
return "Real Estate"
|
126 |
-
if any(k in text for k in ["shop", "buy", "product", "phone", "amazon", "flipkart"]):
|
127 |
-
return "E-commerce"
|
128 |
return "Generic"
|
129 |
|
130 |
# === Product Category Detector ===
|
131 |
def detect_product_category(text):
|
132 |
text = text.lower()
|
133 |
-
if any(k in text for k in ["mobile", "smartphone", "iphone", "samsung", "phone"]):
|
134 |
-
|
135 |
-
if any(k in text for k in ["
|
136 |
-
|
137 |
-
if any(k in text for k in ["
|
138 |
-
return "Home Appliances"
|
139 |
-
if any(k in text for k in ["watch", "band", "fitbit", "wearable"]):
|
140 |
-
return "Wearables"
|
141 |
-
if any(k in text for k in ["app", "portal", "site", "website"]):
|
142 |
-
return "Web App"
|
143 |
return "General"
|
|
|
12 |
from transformers import pipeline
|
13 |
import numpy as np
|
14 |
import logging
|
15 |
+
import re
|
16 |
|
17 |
# === Pipelines ===
|
18 |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
|
|
|
61 |
logging.warning(f"Emotion detection failed: {e}")
|
62 |
return "neutral"
|
63 |
|
64 |
+
# === Follow-up Q&A ===
|
65 |
def answer_followup(text, question, verbosity="brief"):
|
66 |
try:
|
67 |
if isinstance(question, list):
|
|
|
69 |
for q in question:
|
70 |
response = qa_pipeline({"question": q, "context": text})
|
71 |
ans = response.get("answer", "")
|
72 |
+
answers.append(f"**{q}** → {ans}" if verbosity.lower() == "detailed" else ans)
|
|
|
|
|
|
|
73 |
return answers
|
74 |
else:
|
75 |
response = qa_pipeline({"question": question, "context": text})
|
|
|
79 |
logging.warning(f"Follow-up error: {e}")
|
80 |
return "Sorry, I couldn't generate a follow-up answer."
|
81 |
|
|
|
82 |
def answer_only(text, question):
|
83 |
try:
|
84 |
if not question:
|
|
|
88 |
logging.warning(f"Answer-only failed: {e}")
|
89 |
return "Q&A failed."
|
90 |
|
91 |
+
# === Explanation Generator ===
|
92 |
def generate_explanation(text):
|
93 |
try:
|
94 |
explanation = summarizer(text, max_length=60, min_length=20, do_sample=False)[0]["summary_text"]
|
|
|
97 |
logging.warning(f"Explanation failed: {e}")
|
98 |
return "⚠️ Explanation could not be generated."
|
99 |
|
100 |
+
# === Churn Risk Estimator ===
|
101 |
+
def assess_churn_risk(sentiment_label, emotion_label):
|
102 |
+
if sentiment_label.lower() == "negative" and emotion_label.lower() in ["anger", "fear", "sadness", "frustrated"]:
|
103 |
+
return "High Risk"
|
104 |
+
return "Low Risk"
|
105 |
+
|
106 |
+
# === Pain Point Extractor ===
|
107 |
+
def extract_pain_points(text):
|
108 |
+
common_issues = [
|
109 |
+
"slow", "crash", "lag", "expensive", "confusing", "noisy", "poor", "rude",
|
110 |
+
"unhelpful", "bug", "broken", "unresponsive", "not working", "error", "delay", "disconnect"
|
111 |
+
]
|
112 |
+
matched = [kw for kw in common_issues if re.search(rf"\b{kw}\b", text.lower())]
|
113 |
+
return list(set(matched))[:5]
|
114 |
+
|
115 |
# === Industry Detector ===
|
116 |
def detect_industry(text):
|
117 |
text = text.lower()
|
118 |
+
if any(k in text for k in ["doctor", "hospital", "health", "pill", "med"]): return "Healthcare"
|
119 |
+
if any(k in text for k in ["flight", "hotel", "trip", "booking"]): return "Travel"
|
120 |
+
if any(k in text for k in ["bank", "loan", "credit", "payment"]): return "Banking"
|
121 |
+
if any(k in text for k in ["gym", "trainer", "fitness", "workout"]): return "Fitness"
|
122 |
+
if any(k in text for k in ["movie", "series", "stream", "video"]): return "Entertainment"
|
123 |
+
if any(k in text for k in ["game", "gaming", "console"]): return "Gaming"
|
124 |
+
if any(k in text for k in ["food", "delivery", "restaurant", "order"]): return "Food Delivery"
|
125 |
+
if any(k in text for k in ["school", "university", "teacher", "course"]): return "Education"
|
126 |
+
if any(k in text for k in ["insurance", "policy", "claim"]): return "Insurance"
|
127 |
+
if any(k in text for k in ["property", "rent", "apartment", "house"]): return "Real Estate"
|
128 |
+
if any(k in text for k in ["shop", "buy", "product", "phone", "amazon", "flipkart"]): return "E-commerce"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
return "Generic"
|
130 |
|
131 |
# === Product Category Detector ===
|
132 |
def detect_product_category(text):
|
133 |
text = text.lower()
|
134 |
+
if any(k in text for k in ["mobile", "smartphone", "iphone", "samsung", "phone"]): return "Mobile Devices"
|
135 |
+
if any(k in text for k in ["laptop", "macbook", "notebook", "chromebook"]): return "Laptops"
|
136 |
+
if any(k in text for k in ["tv", "refrigerator", "microwave", "washer"]): return "Home Appliances"
|
137 |
+
if any(k in text for k in ["watch", "band", "fitbit", "wearable"]): return "Wearables"
|
138 |
+
if any(k in text for k in ["app", "portal", "site", "website"]): return "Web App"
|
|
|
|
|
|
|
|
|
|
|
139 |
return "General"
|