import streamlit as st import requests import pandas as pd from gtts import gTTS import base64 from io import BytesIO from PIL import Image import os import plotly.express as px st.set_page_config(page_title="NeuroPulse AI", page_icon="๐Ÿง ", layout="wide") # Load logo logo_path = "logo.png" if os.path.exists(logo_path): st.image(logo_path, width=180) # Session State defaults if "review" not in st.session_state: st.session_state.review = "" if "dark_mode" not in st.session_state: st.session_state.dark_mode = False if "intelligence_mode" not in st.session_state: st.session_state.intelligence_mode = True if "trigger_example_analysis" not in st.session_state: st.session_state.trigger_example_analysis = False # Apply Dark Mode Styling if st.session_state.dark_mode: st.markdown(""" """, unsafe_allow_html=True) # Sidebar controls with st.sidebar: st.header("โš™๏ธ Global Settings") st.session_state.dark_mode = st.toggle("๐ŸŒ™ Dark Mode", value=st.session_state.dark_mode) st.session_state.intelligence_mode = st.toggle("๐Ÿง  Intelligence Mode", value=st.session_state.intelligence_mode) DEFAULT_DEMO_TOKEN = "my-secret-key" api_token = st.text_input("๐Ÿ” API Token", value=DEFAULT_DEMO_TOKEN, type="password") if not api_token or api_token.strip() == "my-secret-key": st.warning("๐Ÿงช Running in demo mode โ€” for full access, enter a valid API key.") backend_url = st.text_input("๐ŸŒ Backend URL", value="http://localhost:8000") sentiment_model = st.selectbox("๐Ÿ“Š Sentiment Model", [ "distilbert-base-uncased-finetuned-sst-2-english", "nlptown/bert-base-multilingual-uncased-sentiment" ]) industry = st.selectbox("๐Ÿญ Industry", [ "Auto-detect", "Generic", "E-commerce", "Healthcare", "Education", "Travel", "Banking", "Insurance", "Gaming", "Food Delivery", "Real Estate", "Fitness", "Entertainment" ]) product_category = st.selectbox("๐Ÿงฉ Product Category", [ "Auto-detect", "General", "Mobile Devices", "Laptops", "Healthcare Devices", "Banking App", "Travel Service", "Educational Tool", "Insurance Portal", "Streaming App", "Wearables", "Home Appliances", "Food Apps" ]) use_aspects = st.checkbox("๐Ÿ”ฌ Enable Aspect Analysis") use_smart_summary = st.checkbox("๐Ÿง  Smart Summary (Single)") use_smart_summary_bulk = st.checkbox("๐Ÿง  Smart Summary for Bulk") verbosity = st.radio("๐Ÿ—ฃ๏ธ Response Style", ["Brief", "Detailed"]) voice_lang = st.selectbox("๐Ÿ”ˆ Voice Language", ["en", "fr", "es", "de", "hi", "zh"]) # TTS def speak(text, lang='en'): tts = gTTS(text, lang=lang) mp3 = BytesIO() tts.write_to_fp(mp3) b64 = base64.b64encode(mp3.getvalue()).decode() st.markdown(f'', unsafe_allow_html=True) mp3.seek(0) return mp3 tab1, tab2 = st.tabs(["๐Ÿง  Single Review", "๐Ÿ“š Bulk CSV"]) # --- SINGLE REVIEW --- with tab1: st.title("๐Ÿง  NeuroPulse AI โ€“ Multimodal Review Analyzer") st.markdown("
Minimum 20โ€“50 words recommended.
", unsafe_allow_html=True) review = st.text_area("๐Ÿ“ Enter Review", value=st.session_state.review, height=180) col1, col2, col3 = st.columns(3) with col1: analyze = st.button("๐Ÿ” Analyze", use_container_width=True, disabled=not api_token) with col2: if st.button("๐ŸŽฒ Example", use_container_width=True): st.session_state.review = ( "I love this phone! Super fast performance, great battery, and smooth UI. " "Camera is awesome too, though the price is a bit high. Overall, very happy." ) st.session_state.trigger_example_analysis = True st.rerun() with col3: if st.button("๐Ÿงน Clear", use_container_width=True): st.session_state.review = "" st.rerun() if st.session_state.trigger_example_analysis and st.session_state.review: analyze = True st.session_state.trigger_example_analysis = False if analyze and review: if len(review.split()) < 20: st.warning("โš ๏ธ Please enter at least 20 words.") else: with st.spinner("Analyzing..."): try: payload = { "text": review, "model": sentiment_model, "industry": industry, "aspects": use_aspects, "follow_up": None, "product_category": product_category, "verbosity": verbosity, "intelligence": st.session_state.intelligence_mode } headers = {"x-api-key": st.session_state.get("api_token", api_token)} params = {"smart": "1"} if use_smart_summary else {} res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers, params=params) if res.status_code == 200: data = res.json() st.success("โœ… Analysis Complete") st.subheader("๐Ÿ“Œ Summary") st.info(data["summary"]) st.caption(f"๐Ÿง  Summary Type: {'Smart' if use_smart_summary else 'Standard'} | {verbosity} Response") st.markdown(f"**Context:** `{data['industry']}` | `{data['product_category']}` | `Web`") st.subheader("๐Ÿ”Š Audio") audio = speak(data["summary"], lang=voice_lang) st.download_button("โฌ‡๏ธ Download Summary Audio", audio.read(), "summary.mp3", mime="audio/mp3") st.metric("๐Ÿ“Š Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}") st.info(f"๐Ÿ’ข Emotion: {data['emotion']}") if data.get("aspects"): st.subheader("๐Ÿ” Aspects") for a in data["aspects"]: st.write(f"๐Ÿ”น {a['aspect']}: {a['sentiment']} ({a['score']:.2%})") # --- Follow-Up Section --- st.markdown("### ๐Ÿ” Got questions?") st.info("๐Ÿ’ฌ You can ask a follow-up question based on this review summary.") sample_questions = [ "What did the user like most?", "Any complaints mentioned?", "Is it positive overall?", "What are the improvement areas?" ] selected_q = st.selectbox("๐Ÿ’ก Sample Questions", ["Type your own..."] + sample_questions) custom_q = st.text_input("๐Ÿ” Ask a follow-up", value="" if selected_q == "Type your own..." else selected_q) if custom_q: with st.spinner("Thinking..."): payload["follow_up"] = custom_q res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers, params=params) if res.status_code == 200: follow = res.json().get("follow_up") if follow: st.subheader("๐Ÿ” Follow-Up Answer") st.warning(follow) else: st.error(f"โŒ Follow-up failed: {res.json().get('detail')}") else: st.error(f"โŒ API Error {res.status_code}: {res.json().get('detail', 'Unknown error')}") except Exception as e: st.error(f"๐Ÿšซ Exception occurred: {e}") # --- BULK CSV --- with tab2: st.title("๐Ÿ“š Bulk CSV Upload") st.markdown(""" Upload a CSV with the following columns:
review (required), industry, product_category, device (optional) """, unsafe_allow_html=True) with st.expander("๐Ÿ“„ Sample CSV"): with open("sample_reviews.csv", "rb") as f: st.download_button("โฌ‡๏ธ Download sample CSV", f, file_name="sample_reviews.csv") uploaded_file = st.file_uploader("๐Ÿ“ Upload your CSV", type="csv") if uploaded_file: if not api_token: st.error("๐Ÿ” Please enter your API token in the sidebar.") else: try: df = pd.read_csv(uploaded_file) if "review" not in df.columns: st.error("CSV must contain a `review` column.") else: st.success(f"โœ… Loaded {len(df)} reviews") for col in ["industry", "product_category", "device"]: if col not in df.columns: df[col] = ["Auto-detect"] * len(df) df[col] = df[col].fillna("Auto-detect").astype(str) df["industry"] = df["industry"].apply(lambda x: "Generic" if x.lower() == "auto-detect" else x) df["product_category"] = df["product_category"].apply(lambda x: "General" if x.lower() == "auto-detect" else x) df["device"] = df["device"].apply(lambda x: "Web" if x.lower() == "auto-detect" else x) if st.button("๐Ÿ“Š Analyze Bulk Reviews", use_container_width=True): with st.spinner("Processing..."): try: payload = { "reviews": df["review"].tolist(), "model": sentiment_model, "aspects": use_aspects, "industry": df["industry"].tolist(), "product_category": df["product_category"].tolist(), "device": df["device"].tolist(), "intelligence": st.session_state.intelligence_mode, } res = requests.post( f"{backend_url}/bulk/?token={st.session_state.get('api_token', api_token)}", json=payload ) if res.status_code == 200: results = pd.DataFrame(res.json()["results"]) st.dataframe(results) if "sentiment" in results.columns: fig = px.pie(results, names="sentiment", title="Sentiment Distribution") st.plotly_chart(fig) st.download_button("โฌ‡๏ธ Download Results CSV", results.to_csv(index=False), "results.csv", mime="text/csv") else: st.error(f"โŒ Bulk Error {res.status_code}: {res.json().get('detail', 'Unknown error')}") except Exception as e: st.error(f"๐Ÿšจ Processing Error: {e}") except Exception as e: st.error(f"โŒ File Read Error: {e}")