import streamlit as st
import requests
import pandas as pd
from gtts import gTTS
import base64
from io import BytesIO
from PIL import Image
import os
st.set_page_config(page_title="NeuroPulse AI", page_icon="๐ง ", layout="wide")
logo_path = os.path.join("app", "static", "logo.png")
if os.path.exists(logo_path):
st.image(logo_path, width=160)
# Session state defaults
if "review" not in st.session_state:
st.session_state.review = ""
if "dark_mode" not in st.session_state:
st.session_state.dark_mode = False
# Shared Sidebar Controls
with st.sidebar:
st.header("โ๏ธ Global Settings")
st.session_state.dark_mode = st.toggle("๐ Dark Mode", value=st.session_state.dark_mode)
api_token = st.text_input("๐ API Token", type="password")
backend_url = st.text_input("๐ฅ๏ธ Backend URL", value="http://0.0.0.0:8000")
sentiment_model = st.selectbox("๐ Sentiment Model", [
"distilbert-base-uncased-finetuned-sst-2-english",
"nlptown/bert-base-multilingual-uncased-sentiment"
])
industry = st.selectbox("๐ญ Industry Context", [
"Auto-detect", "Generic", "E-commerce", "Healthcare", "Education", "Travel", "Banking", "Insurance", "Gaming", "Food Delivery", "Real Estate", "Fitness", "Entertainment"
])
product_category = st.selectbox("๐งฉ Product Category", [
"Auto-detect", "General", "Mobile Devices", "Laptops", "Healthcare Devices", "Banking App", "Travel Service", "Educational Tool", "Insurance Portal", "Streaming App", "Wearables", "Home Appliances", "Food Apps"
])
device_type = st.selectbox("๐ป Device Type", [
"Auto-detect", "Web", "Android", "iOS", "Desktop", "Smartwatch", "Kiosk"
])
use_aspects = st.checkbox("๐ฌ Enable Aspect Analysis")
use_smart_summary = st.checkbox("๐ง Use Smart Summary (Single)")
use_smart_summary_bulk = st.checkbox("๐ง Smart Summary for Bulk")
follow_up = st.text_input("๐ Follow-up Question")
voice_lang = st.selectbox("๐ Voice Language", ["en", "fr", "es", "de", "hi", "zh"])
# Text-to-Speech Helper
def speak(text, lang='en'):
tts = gTTS(text, lang=lang)
mp3 = BytesIO()
tts.write_to_fp(mp3)
b64 = base64.b64encode(mp3.getvalue()).decode()
st.markdown(f'', unsafe_allow_html=True)
mp3.seek(0)
return mp3
# Tabs for modes
tab1, tab2 = st.tabs(["๐ง Single Review", "๐ Bulk CSV"])
# --- SINGLE REVIEW MODE ---
with tab1:
st.title("๐ง NeuroPulse AI โ Multimodal Review Analyzer")
st.markdown("""
Minimum 50โ100 words recommended for optimal insights.
""", unsafe_allow_html=True)
review = st.text_area("๐ Enter a Review", value=st.session_state.review, height=180)
col1, col2, col3 = st.columns(3)
with col1:
analyze = st.button("๐ Analyze", use_container_width=True, disabled=not api_token)
with col2:
if st.button("๐ฒ Example", use_container_width=True):
st.session_state.review = "App was smooth, but the transaction failed twice on Android during checkout."
st.rerun()
with col3:
if st.button("๐งน Clear", use_container_width=True):
st.session_state.review = ""
st.rerun()
if analyze and review:
if len(review.split()) < 50:
st.error("โ ๏ธ Please enter at least 50 words for meaningful analysis.")
else:
with st.spinner("Analyzing..."):
try:
payload = {
"text": review,
"model": sentiment_model,
"industry": industry,
"aspects": use_aspects,
"follow_up": follow_up,
"product_category": product_category,
"device": device_type
}
headers = {"X-API-Key": api_token}
params = {"smart": "1"} if use_smart_summary else {}
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers, params=params)
if res.status_code == 200:
data = res.json()
st.success("โ
Analysis Complete")
st.subheader("๐ Summary")
st.info(data["summary"])
st.caption(f"๐ง Summary Type: {'Smart Summary' if use_smart_summary else 'Standard Model'}")
st.markdown(f"**Context:** {industry} | {product_category} | {device_type}")
st.subheader("๐ Audio")
audio = speak(data["summary"], lang=voice_lang)
st.download_button("โฌ๏ธ Download Summary Audio", audio.read(), "summary.mp3", mime="audio/mp3")
st.metric("๐ Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
st.info(f"๐ข Emotion: {data['emotion']}")
if data.get("aspects"):
st.subheader("๐ Aspects")
for a in data["aspects"]:
st.write(f"๐น {a['aspect']}: {a['sentiment']} ({a['score']:.2%})")
if data.get("follow_up"):
st.subheader("๐ง Follow-Up Response")
st.warning(data["follow_up"])
else:
st.error(f"โ API Error: {res.status_code}")
except Exception as e:
st.error(f"๐ซ {e}")
# --- BULK REVIEW MODE ---
with tab2:
st.title("๐ Bulk CSV Upload")
st.markdown("""
Upload a CSV with the following columns:
review
(required),
industry
, product_category
, device
(optional)
""", unsafe_allow_html=True)
with st.expander("๐ Sample CSV"):
with open("sample_reviews.csv", "rb") as f:
st.download_button("โฌ๏ธ Download sample CSV", f, file_name="sample_reviews.csv")
uploaded_file = st.file_uploader("๐ Upload your CSV", type="csv")
if uploaded_file and api_token:
try:
df = pd.read_csv(uploaded_file)
if "review" not in df.columns:
st.error("CSV must contain a `review` column.")
else:
st.success(f"โ
Loaded {len(df)} reviews")
for col in ["industry", "product_category", "device"]:
if col not in df.columns:
df[col] = [industry if industry != "Auto-detect" else "Generic"] * len(df)
df[col] = df[col].fillna("").astype(str)
if st.button("๐ Analyze Bulk Reviews", use_container_width=True):
with st.spinner("Processing CSV..."):
try:
payload = {
"reviews": df["review"].tolist(),
"model": sentiment_model,
"aspects": use_aspects,
"industry": df["industry"].tolist(),
"product_category": df["product_category"].tolist(),
"device": df["device"].tolist()
}
headers = {"X-API-Key": api_token}
params = {"smart": "1"} if use_smart_summary_bulk else {}
res = requests.post(f"{backend_url}/bulk/", json=payload, headers=headers, params=params)
if res.status_code == 200:
results = pd.DataFrame(res.json()["results"])
results["summary_type"] = "Smart" if use_smart_summary_bulk else "Standard"
st.dataframe(results)
st.download_button("โฌ๏ธ Download Results CSV", results.to_csv(index=False), "bulk_results.csv", mime="text/csv")
else:
st.error(f"โ Bulk Analysis Failed: {res.status_code}")
except Exception as e:
st.error(f"๐ฅ Error: {e}")
except Exception as e:
st.error(f"โ File Error: {e}")