from fastapi import FastAPI, Request, Header, HTTPException
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.openapi.utils import get_openapi
from fastapi.openapi.docs import get_swagger_ui_html
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from fastapi import Query
from transformers import pipeline
import os, logging, traceback
from model import summarize_review, smart_summarize, detect_industry, detect_product_category, answer_followup
from typing import Optional, List
app = FastAPI(
title="\U0001f9e0 NeuroPulse AI",
description="Multilingual GenAI for smarter feedback — summarization, sentiment, emotion, aspects, Q&A and tags.",
version="2025.1.0",
openapi_url="/openapi.json",
docs_url=None,
redoc_url="/redoc"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.exception_handler(Exception)
async def exception_handler(request: Request, exc: Exception):
logging.error(f"Unhandled Exception: {traceback.format_exc()}")
return JSONResponse(status_code=500, content={"detail": "Internal Server Error. Please contact support."})
@app.get("/docs", include_in_schema=False)
def custom_swagger_ui():
return get_swagger_ui_html(
openapi_url=app.openapi_url,
title="\U0001f9e0 Swagger UI - NeuroPulse AI",
swagger_favicon_url="https://cdn-icons-png.flaticon.com/512/3794/3794616.png",
swagger_js_url="https://cdn.jsdelivr.net/npm/swagger-ui-dist@4.18.3/swagger-ui-bundle.js",
swagger_css_url="https://cdn.jsdelivr.net/npm/swagger-ui-dist@4.18.3/swagger-ui.css",
)
@app.get("/", response_class=HTMLResponse)
def root():
return "
NeuroPulse AI Backend is Running
"
class ReviewInput(BaseModel):
text: str
model: str = "distilbert-base-uncased-finetuned-sst-2-english"
industry: Optional[str] = None
aspects: bool = False
follow_up: Optional[str] = None
product_category: Optional[str] = None
device: Optional[str] = None
intelligence: Optional[bool] = False
verbosity: Optional[str] = "detailed"
explain: Optional[bool] = False
class BulkReviewInput(BaseModel):
reviews: List[str]
model: str = "distilbert-base-uncased-finetuned-sst-2-english"
industry: Optional[List[str]] = None
aspects: bool = False
product_category: Optional[List[str]] = None
device: Optional[List[str]] = None
intelligence: Optional[bool] = False
VALID_API_KEY = "my-secret-key"
logging.basicConfig(level=logging.INFO)
sentiment_pipeline = pipeline("sentiment-analysis")
def auto_fill(value: Optional[str], fallback: str) -> str:
if not value or value.lower() == "auto-detect":
return fallback
return value
@app.post("/analyze/")
async def analyze(data: ReviewInput, x_api_key: str = Header(None)):
if x_api_key and x_api_key != VALID_API_KEY:
raise HTTPException(status_code=401, detail="❌ Invalid API key")
if len(data.text.split()) < 20:
raise HTTPException(status_code=400, detail="⚠️ Review too short for analysis (min. 20 words).")
try:
# Smart summary logic based on verbosity and intelligence
if data.verbosity.lower() == "brief":
summary = summarize_review(data.text, max_len=40, min_len=8)
else:
summary = smart_summarize(data.text, n_clusters=2 if data.intelligence else 1)
sentiment = sentiment_pipeline(data.text)[0]
emotion = "joy"
# Auto-detection logic
industry = detect_industry(data.text) if not data.industry or "auto" in data.industry.lower() else data.industry
product_category = detect_product_category(data.text) if not data.product_category or "auto" in data.product_category.lower() else data.product_category
device = "Web"
follow_up_response = None
if data.follow_up:
follow_up_response = answer_followup(data.text, data.follow_up, verbosity=data.verbosity)
return {
"summary": summary,
"sentiment": sentiment,
"emotion": emotion,
"product_category": product_category,
"device": device,
"industry": industry,
"follow_up": follow_up_response
}
except Exception as e:
logging.error(f"🔥 Unexpected analysis failure: {traceback.format_exc()}")
raise HTTPException(status_code=500, detail="Internal Server Error during analysis. Please contact support.")
@app.post("/bulk/")
async def bulk_analyze(
data: BulkReviewInput,
token: str = Query(None)
):
if token != VALID_API_KEY:
raise HTTPException(status_code=401, detail="❌ Unauthorized: Invalid API token")
try:
results = []
for i, review_text in enumerate(data.reviews):
if len(review_text.split()) < 20:
results.append({
"review": review_text,
"error": "Too short to analyze"
})
continue
summary = smart_summarize(review_text, n_clusters=2 if data.intelligence else 1)
sentiment = sentiment_pipeline(review_text)[0]
emotion = "joy"
ind = auto_fill(data.industry[i] if data.industry else None, detect_industry(review_text))
prod = auto_fill(data.product_category[i] if data.product_category else None, detect_product_category(review_text))
dev = auto_fill(data.device[i] if data.device else None, "Web")
results.append({
"review": review_text,
"summary": summary,
"sentiment": sentiment["label"],
"score": sentiment["score"],
"emotion": emotion,
"industry": ind,
"product_category": prod,
"device": dev
})
return {"results": results}
except Exception as e:
logging.error(f"🔥 Bulk processing failed: {traceback.format_exc()}")
raise HTTPException(status_code=500, detail="Failed to analyze bulk reviews")