import streamlit as st import requests import pandas as pd from gtts import gTTS import base64 from io import BytesIO from PIL import Image import os import plotly.express as px st.set_page_config(page_title="NeuroPulse AI", page_icon="๐ง ", layout="wide") # Logo logo_path = "logo.png" if os.path.exists(logo_path): st.image(logo_path, width=180) # Session State if "review" not in st.session_state: st.session_state.review = "" if "dark_mode" not in st.session_state: st.session_state.dark_mode = False if "intelligence_mode" not in st.session_state: st.session_state.intelligence_mode = True if "trigger_example_analysis" not in st.session_state: st.session_state.trigger_example_analysis = False # Dark Mode Style if st.session_state.dark_mode: st.markdown(""" """, unsafe_allow_html=True) # Sidebar Controls with st.sidebar: st.header("โ๏ธ Global Settings") # Dark Mode Toggle with refresh if st.toggle("๐ Dark Mode", value=st.session_state.dark_mode): if not st.session_state.dark_mode: st.session_state.dark_mode = True st.rerun() else: if st.session_state.dark_mode: st.session_state.dark_mode = False st.rerun() if st.toggle("๐ง Intelligence Mode", value=st.session_state.intelligence_mode): st.session_state.intelligence_mode = True else: st.session_state.intelligence_mode = False DEFAULT_DEMO_TOKEN = "my-secret-key" api_token = st.text_input("๐ API Token", value=DEFAULT_DEMO_TOKEN, type="password") if not api_token or api_token.strip() == "my-secret-key": st.warning("๐งช Running in demo mode โ for full access, enter a valid API key.") backend_url = st.text_input("๐ Backend URL", value="http://localhost:8000") sentiment_model = st.selectbox("๐ Sentiment Model", [ "distilbert-base-uncased-finetuned-sst-2-english", "nlptown/bert-base-multilingual-uncased-sentiment" ]) industry = st.selectbox("๐ญ Industry", [ "Auto-detect", "Generic", "E-commerce", "Healthcare", "Education", "Travel", "Banking", "Insurance", "Gaming", "Food Delivery", "Real Estate", "Fitness", "Entertainment" ]) product_category = st.selectbox("๐งฉ Product Category", [ "Auto-detect", "General", "Mobile Devices", "Laptops", "Healthcare Devices", "Banking App", "Travel Service", "Educational Tool", "Insurance Portal", "Streaming App", "Wearables", "Home Appliances", "Food Apps" ]) use_aspects = st.checkbox("๐ฌ Enable Aspect Analysis") use_smart_summary = st.checkbox("๐ง Smart Summary (Single)") use_smart_summary_bulk = st.checkbox("๐ง Smart Summary for Bulk") use_explain_bulk = st.checkbox("๐ง Generate Explanations (Bulk)") verbosity = st.radio("๐ฃ๏ธ Response Style", ["Brief", "Detailed"]) voice_lang = st.selectbox("๐ Voice Language", ["en", "fr", "es", "de", "hi", "zh"]) # TTS Function def speak(text, lang='en'): tts = gTTS(text, lang=lang) mp3 = BytesIO() tts.write_to_fp(mp3) b64 = base64.b64encode(mp3.getvalue()).decode() st.markdown(f'', unsafe_allow_html=True) mp3.seek(0) return mp3 tab1, tab2 = st.tabs(["๐ง Single Review", "๐ Bulk CSV"]) # --- SINGLE REVIEW TAB --- with tab1: st.title("๐ง NeuroPulse AI โ Multimodal Review Analyzer") st.markdown("
review
(required), industry
, product_category
, device
, follow_up
(optional)
""", unsafe_allow_html=True)
with st.expander("๐ Sample CSV"):
with open("sample_reviews.csv", "rb") as f:
st.download_button("โฌ๏ธ Download sample CSV", f, file_name="sample_reviews.csv")
uploaded_file = st.file_uploader("๐ Upload your CSV", type="csv")
if uploaded_file:
if not api_token:
st.error("๐ Please enter your API token in the sidebar.")
else:
try:
df = pd.read_csv(uploaded_file)
if "review" not in df.columns:
st.error("CSV must contain a `review` column.")
else:
st.success(f"โ
Loaded {len(df)} reviews")
for col in ["industry", "product_category", "device", "follow_up"]:
if col not in df.columns:
df[col] = ["Auto-detect"] * len(df)
df[col] = df[col].fillna("Auto-detect").astype(str)
df["industry"] = df["industry"].apply(lambda x: "Generic" if x.lower() == "auto-detect" else x)
df["product_category"] = df["product_category"].apply(lambda x: "General" if x.lower() == "auto-detect" else x)
df["device"] = df["device"].apply(lambda x: "Web" if x.lower() == "auto-detect" else x)
if st.button("๐ Analyze Bulk Reviews", use_container_width=True):
with st.spinner("Processing..."):
try:
payload = {
"reviews": df["review"].tolist(),
"model": sentiment_model,
"aspects": use_aspects,
"industry": df["industry"].tolist(),
"product_category": df["product_category"].tolist(),
"device": df["device"].tolist(),
"follow_up": df["follow_up"].tolist(),
"explain": use_explain_bulk,
"intelligence": st.session_state.intelligence_mode,
}
res = requests.post(
f"{backend_url}/bulk/?token={st.session_state.get('api_token', api_token)}",
json=payload
)
if res.status_code == 200:
results = pd.DataFrame(res.json()["results"])
st.dataframe(results)
if "sentiment" in results.columns:
fig = px.pie(results, names="sentiment", title="Sentiment Distribution")
st.plotly_chart(fig)
st.download_button("โฌ๏ธ Download Results CSV", results.to_csv(index=False), "results.csv", mime="text/csv")
else:
st.error(f"โ Bulk Error {res.status_code}: {res.json().get('detail', 'Unknown error')}")
except Exception as e:
st.error(f"๐จ Processing Error: {e}")
except Exception as e:
st.error(f"โ File Read Error: {e}")