# [STREAMLIT FRONTEND - Product Feedback AI Assistant]
import streamlit as st
import requests
import pandas as pd
from gtts import gTTS
import base64
from io import BytesIO
import os
import plotly.express as px
st.set_page_config(page_title="PM Feedback Assistant", page_icon="๐ง ", layout="wide")
if os.path.exists("logo.png"):
st.image("logo.png", width=180)
# Session state setup
defaults = {
"review": "",
"dark_mode": False,
"intelligence_mode": True,
"trigger_example_analysis": False,
"last_response": None,
"followup_answer": None
}
for k, v in defaults.items():
if k not in st.session_state:
st.session_state[k] = v
# Dark mode styling
if st.session_state.dark_mode:
st.markdown("""
""", unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.header("โ๏ธ PM Config")
st.session_state.dark_mode = st.toggle("๐ Dark Mode", value=st.session_state.dark_mode)
st.session_state.intelligence_mode = st.toggle("๐ง Intelligence Mode", value=st.session_state.intelligence_mode)
api_token = st.text_input("๐ API Token", value="my-secret-key", type="password")
if not api_token or api_token.strip() == "my-secret-key":
st.warning("๐งช Demo Mode โ Not all features active.")
backend_url = st.text_input("๐ Backend URL", value="http://localhost:8000")
sentiment_model = st.selectbox("๐ Sentiment Model", [
"Auto-detect",
"distilbert-base-uncased-finetuned-sst-2-english",
"nlptown/bert-base-multilingual-uncased-sentiment"
])
industry = st.selectbox("๐ญ Industry", ["Auto-detect", "Generic", "E-commerce", "Healthcare", "Education"])
product_category = st.selectbox("๐งฉ Product Category", ["Auto-detect", "General", "Mobile Devices", "Laptops"])
use_aspects = st.checkbox("๐ Detect Pain Points")
use_explain_bulk = st.checkbox("๐ง Generate PM Insight (Bulk)")
verbosity = st.radio("๐ฃ๏ธ Response Style", ["Brief", "Detailed"])
voice_lang = st.selectbox("๐ Voice Language", ["en", "fr", "es", "de", "hi", "zh"])
# TTS
def speak(text, lang='en'):
tts = gTTS(text, lang=lang)
mp3 = BytesIO()
tts.write_to_fp(mp3)
b64 = base64.b64encode(mp3.getvalue()).decode()
st.markdown(f'', unsafe_allow_html=True)
mp3.seek(0)
return mp3
tab1, tab2 = st.tabs(["๐ง Analyze Review", "๐ Bulk Reviews"])
# === SINGLE REVIEW ===
with tab1:
st.title("๐ Product Feedback AI Assistant")
st.markdown("Get insights from real user feedback to reduce churn and improve product strategy.")
review = st.text_area("๐ Enter Customer Feedback", value=st.session_state.review, height=180)
st.session_state.review = review
col1, col2, col3 = st.columns(3)
with col1:
analyze = st.button("๐ Analyze")
with col2:
if st.button("๐ฒ Example"):
st.session_state.review = (
"The app crashes every time I try to checkout. It's so slow and unresponsive. "
"Customer support never replied. I'm switching to another brand."
)
st.session_state.trigger_example_analysis = True
st.rerun()
with col3:
if st.button("๐งน Clear"):
for key in ["review", "last_response", "followup_answer"]:
st.session_state[key] = ""
st.rerun()
if (analyze or st.session_state.trigger_example_analysis) and st.session_state.review:
st.session_state.trigger_example_analysis = False
st.session_state.followup_answer = None
with st.spinner("Analyzing feedback..."):
try:
model = None if sentiment_model == "Auto-detect" else sentiment_model
payload = {
"text": st.session_state.review,
"model": model or "distilbert-base-uncased-finetuned-sst-2-english",
"industry": industry,
"product_category": product_category,
"verbosity": verbosity,
"aspects": use_aspects,
"intelligence": st.session_state.intelligence_mode
}
headers = {"x-api-key": api_token}
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers)
if res.status_code == 200:
st.session_state.last_response = res.json()
else:
st.error(f"API error: {res.status_code} - {res.json().get('detail')}")
except Exception as e:
st.error(f"๐ซ Exception: {e}")
data = st.session_state.last_response
if data:
st.subheader("๐ PM Insight Summary")
st.info(data["summary"])
st.caption("๐ Summary Model: facebook/bart-large-cnn | " + verbosity + " response")
st.markdown(f"**Industry:** `{data['industry']}` | **Category:** `{data['product_category']}` | **Device:** Web")
st.metric("๐ Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
st.info(f"๐ข Emotion: {data['emotion']}")
if "churn_risk" in data:
st.warning(f"โ ๏ธ Estimated Churn Risk: {data['churn_risk']}")
if "pain_points" in data and data["pain_points"]:
st.error("๐ Pain Points: " + ", ".join(data["pain_points"]))
st.subheader("๐ Audio Summary")
audio = speak(data["summary"], lang=voice_lang)
st.download_button("โฌ๏ธ Download Audio", audio.read(), "summary.mp3")
st.markdown("### ๐ Ask a Follow-Up")
sample_questions = ["What made the user upset?", "Any feature complaints?", "How urgent is this?"]
selected_q = st.selectbox("๐ก Suggested Questions", ["Type your own..."] + sample_questions)
custom_q = selected_q if selected_q != "Type your own..." else st.text_input("๐ Follow-up Question")
if custom_q:
with st.spinner("Thinking..."):
try:
follow_payload = {
"text": st.session_state.review,
"question": custom_q,
"verbosity": verbosity
}
headers = {"x-api-key": api_token}
res = requests.post(f"{backend_url}/followup/", json=follow_payload, headers=headers)
if res.status_code == 200:
st.session_state.followup_answer = res.json().get("answer")
else:
st.error(f"โ Follow-up failed: {res.json().get('detail')}")
except Exception as e:
st.error(f"โ ๏ธ Follow-up error: {e}")
if st.session_state.followup_answer:
st.subheader("โ
Answer")
st.success(st.session_state.followup_answer)