import os os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache" os.environ["HF_HOME"] = "/tmp/hf-home" import nltk nltk.download("punkt", download_dir="/tmp/nltk_data") from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cluster import KMeans from sklearn.metrics.pairwise import cosine_similarity from nltk.tokenize import sent_tokenize from transformers import pipeline import numpy as np # Load summarizer and Q&A pipeline summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad") # --- Summarization Functions --- def summarize_review(text): """Standard transformer-based summarization""" return summarizer(text, max_length=max_len, min_length=min_len, do_sample=False)[0]["summary_text"] def smart_summarize(text, n_clusters=1): """ Clustering + cosine similarity-based summarization Selects most representative sentence(s) from each cluster """ sentences = sent_tokenize(text) if len(sentences) <= 1: return text tfidf = TfidfVectorizer(stop_words="english") tfidf_matrix = tfidf.fit_transform(sentences) if len(sentences) <= n_clusters: return " ".join(sentences) kmeans = KMeans(n_clusters=n_clusters, random_state=42).fit(tfidf_matrix) summary_sentences = [] for i in range(n_clusters): idx = np.where(kmeans.labels_ == i)[0] if not len(idx): continue avg_vector = np.asarray(tfidf_matrix[idx].mean(axis=0)) sim = cosine_similarity(avg_vector, tfidf_matrix[idx].toarray()) most_representative = sentences[idx[np.argmax(sim)]] summary_sentences.append(most_representative) return " ".join(sorted(summary_sentences, key=sentences.index)) # --- Rule-based Category Detectors --- def detect_industry(text): text = text.lower() if any(k in text for k in ["doctor", "hospital", "health", "pill", "med"]): return "Healthcare" if any(k in text for k in ["flight", "hotel", "trip", "booking"]): return "Travel" if any(k in text for k in ["bank", "loan", "credit", "payment"]): return "Banking" if any(k in text for k in ["gym", "trainer", "fitness", "workout"]): return "Fitness" if any(k in text for k in ["movie", "series", "stream", "video"]): return "Entertainment" if any(k in text for k in ["game", "gaming", "console"]): return "Gaming" if any(k in text for k in ["food", "delivery", "restaurant", "order"]): return "Food Delivery" if any(k in text for k in ["school", "university", "teacher", "course"]): return "Education" if any(k in text for k in ["insurance", "policy", "claim"]): return "Insurance" if any(k in text for k in ["property", "rent", "apartment", "house"]): return "Real Estate" if any(k in text for k in ["shop", "buy", "product", "phone", "amazon", "flipkart"]): return "E-commerce" return "Generic" def detect_product_category(text): text = text.lower() if any(k in text for k in ["mobile", "smartphone", "iphone", "samsung", "phone"]): return "Mobile Devices" if any(k in text for k in ["laptop", "macbook", "notebook", "chromebook"]): return "Laptops" if any(k in text for k in ["tv", "refrigerator", "microwave", "washer"]): return "Home Appliances" if any(k in text for k in ["watch", "band", "fitbit", "wearable"]): return "Wearables" if any(k in text for k in ["app", "portal", "site", "website"]): return "Web App" return "General" # --- Follow-up Q&A --- def answer_followup(text, question, verbosity="brief"): try: response = qa_pipeline({"question": question, "context": text}) answer = response.get("answer", "") if verbosity.lower() == "detailed": return f"Based on the review, the answer is: **{answer}**" return answer except Exception: return "Sorry, I couldn't generate a follow-up answer."