import streamlit as st import requests import pandas as pd from gtts import gTTS import base64 from io import BytesIO from PIL import Image import os import plotly.express as px st.set_page_config(page_title="NeuroPulse AI", page_icon="๐Ÿง ", layout="wide") logo_path = os.path.join("app", "static", "logo.png") if os.path.exists(logo_path): st.image(logo_path, width=160) # Session state defaults if "review" not in st.session_state: st.session_state.review = "" if "dark_mode" not in st.session_state: st.session_state.dark_mode = False if "intelligence_mode" not in st.session_state: st.session_state.intelligence_mode = True # Shared Sidebar Controls with st.sidebar: st.header("โš™๏ธ Global Settings") st.session_state.dark_mode = st.toggle("๐ŸŒ™ Dark Mode", value=st.session_state.dark_mode) st.session_state.intelligence_mode = st.toggle("๐Ÿง  Intelligence Mode", value=st.session_state.intelligence_mode) api_token = st.text_input("๐Ÿ” API Token", type="password") backend_url = st.text_input("๐Ÿ–ฅ๏ธ Backend URL", value="http://0.0.0.0:8000") sentiment_model = st.selectbox("๐Ÿ“Š Sentiment Model", [ "distilbert-base-uncased-finetuned-sst-2-english", "nlptown/bert-base-multilingual-uncased-sentiment" ]) industry = st.selectbox("๐Ÿญ Industry Context", [ "Auto-detect", "Generic", "E-commerce", "Healthcare", "Education", "Travel", "Banking", "Insurance", "Gaming", "Food Delivery", "Real Estate", "Fitness", "Entertainment" ]) product_category = st.selectbox("๐Ÿงฉ Product Category", [ "Auto-detect", "General", "Mobile Devices", "Laptops", "Healthcare Devices", "Banking App", "Travel Service", "Educational Tool", "Insurance Portal", "Streaming App", "Wearables", "Home Appliances", "Food Apps" ]) device_type = st.selectbox("๐Ÿ’ป Device Type", [ "Auto-detect", "Web", "Android", "iOS", "Desktop", "Smartwatch", "Kiosk" ]) use_aspects = st.checkbox("๐Ÿ”ฌ Enable Aspect Analysis") use_smart_summary = st.checkbox("๐Ÿง  Use Smart Summary (Single)") use_smart_summary_bulk = st.checkbox("๐Ÿง  Smart Summary for Bulk") verbosity = st.radio("๐Ÿ—ฃ๏ธ Response Style", ["Brief", "Detailed"]) follow_up = st.text_input("๐Ÿ” Follow-up Question") voice_lang = st.selectbox("๐Ÿ”ˆ Voice Language", ["en", "fr", "es", "de", "hi", "zh"]) # Text-to-Speech Helper def speak(text, lang='en'): tts = gTTS(text, lang=lang) mp3 = BytesIO() tts.write_to_fp(mp3) b64 = base64.b64encode(mp3.getvalue()).decode() st.markdown(f'', unsafe_allow_html=True) mp3.seek(0) return mp3 # Tabs for modes tab1, tab2 = st.tabs(["๐Ÿง  Single Review", "๐Ÿ“š Bulk CSV"]) # --- SINGLE REVIEW MODE --- with tab1: st.title("๐Ÿง  NeuroPulse AI โ€“ Multimodal Review Analyzer") st.markdown("""
Minimum 50โ€“100 words recommended for optimal insights.
""", unsafe_allow_html=True) review = st.text_area("๐Ÿ“ Enter a Review", value=st.session_state.review, height=180) col1, col2, col3 = st.columns(3) with col1: analyze = st.button("๐Ÿ” Analyze", use_container_width=True, disabled=not api_token) with col2: if st.button("๐ŸŽฒ Example", use_container_width=True): st.session_state.review = "App was smooth, but the transaction failed twice on Android during checkout." st.rerun() with col3: if st.button("๐Ÿงน Clear", use_container_width=True): st.session_state.review = "" st.rerun() if analyze and review: if len(review.split()) < 50: st.error("โš ๏ธ Please enter at least 50 words for meaningful analysis.") else: with st.spinner("Analyzing..."): try: payload = { "text": review, "model": sentiment_model, "industry": industry, "aspects": use_aspects, "follow_up": follow_up, "product_category": product_category, "device": device_type, "verbosity": verbosity, "intelligence": st.session_state.intelligence_mode } headers = {"X-API-Key": api_token} params = {"smart": "1"} if use_smart_summary else {} res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers, params=params) if res.status_code == 200: data = res.json() st.success("โœ… Analysis Complete") st.subheader("๐Ÿ“Œ Summary") st.info(data["summary"]) st.caption(f"๐Ÿง  Summary Type: {'Smart Summary' if use_smart_summary else 'Standard Model'}") st.markdown(f"**Context:** {industry} | {product_category} | {device_type}") st.subheader("๐Ÿ”Š Audio") audio = speak(data["summary"], lang=voice_lang) st.download_button("โฌ‡๏ธ Download Summary Audio", audio.read(), "summary.mp3", mime="audio/mp3") st.metric("๐Ÿ“Š Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}") st.info(f"๐Ÿ’ข Emotion: {data['emotion']}") if data.get("aspects"): st.subheader("๐Ÿ” Aspects") for a in data["aspects"]: st.write(f"๐Ÿ”น {a['aspect']}: {a['sentiment']} ({a['score']:.2%})") if data.get("follow_up"): st.subheader("๐Ÿง  Follow-Up Response") st.warning(data["follow_up"]) if data.get("explanation"): st.subheader("๐Ÿงฎ Explain This") st.markdown(data["explanation"]) else: st.error(f"โŒ API Error: {res.status_code}") except Exception as e: st.error(f"๐Ÿšซ {e}") # --- BULK REVIEW MODE --- with tab2: st.title("๐Ÿ“š Bulk CSV Upload") st.markdown("""
Upload a CSV with the following columns:
review (required), industry, product_category, device (optional)
""", unsafe_allow_html=True) with st.expander("๐Ÿ“„ Sample CSV"): with open("sample_reviews.csv", "rb") as f: st.download_button("โฌ‡๏ธ Download sample CSV", f, file_name="sample_reviews.csv") uploaded_file = st.file_uploader("๐Ÿ“ Upload your CSV", type="csv") if uploaded_file and api_token: try: df = pd.read_csv(uploaded_file) if "review" not in df.columns: st.error("CSV must contain a `review` column.") else: st.success(f"โœ… Loaded {len(df)} reviews") for col in ["industry", "product_category", "device"]: if col not in df.columns: df[col] = [industry if industry != "Auto-detect" else "Generic"] * len(df) df[col] = df[col].fillna("").astype(str) if st.button("๐Ÿ“Š Analyze Bulk Reviews", use_container_width=True): with st.spinner("Processing CSV..."): try: payload = { "reviews": df["review"].tolist(), "model": sentiment_model, "aspects": use_aspects, "industry": df["industry"].tolist(), "product_category": df["product_category"].tolist(), "device": df["device"].tolist(), "intelligence": st.session_state.intelligence_mode } headers = {"X-API-Key": api_token} params = {"smart": "1"} if use_smart_summary_bulk else {} res = requests.post(f"{backend_url}/bulk/", json=payload, headers=headers, params=params) if res.status_code == 200: results = pd.DataFrame(res.json()["results"]) results["summary_type"] = "Smart" if use_smart_summary_bulk else "Standard" st.dataframe(results) if "sentiment" in results: fig = px.pie(results, names="sentiment", title="Sentiment Distribution") st.plotly_chart(fig) st.download_button("โฌ‡๏ธ Download Results CSV", results.to_csv(index=False), "bulk_results.csv", mime="text/csv") else: st.error(f"โŒ Bulk Analysis Failed: {res.status_code}") except Exception as e: st.error(f"๐Ÿ’ฅ Error: {e}") except Exception as e: st.error(f"โŒ File Error: {e}")