import streamlit as st
import requests
import pandas as pd
from gtts import gTTS
import base64
from io import BytesIO
from PIL import Image
import os
import plotly.express as px
st.set_page_config(page_title="NeuroPulse AI", page_icon="๐ง ", layout="wide")
logo_path = os.path.join("app", "static", "logo.png")
if os.path.exists(logo_path):
st.image(logo_path, width=160)
# Session state defaults
if "review" not in st.session_state:
st.session_state.review = ""
if "dark_mode" not in st.session_state:
st.session_state.dark_mode = False
if "intelligence_mode" not in st.session_state:
st.session_state.intelligence_mode = True
# Shared Sidebar Controls
with st.sidebar:
st.header("โ๏ธ Global Settings")
st.session_state.dark_mode = st.toggle("๐ Dark Mode", value=st.session_state.dark_mode)
st.session_state.intelligence_mode = st.toggle("๐ง Intelligence Mode", value=st.session_state.intelligence_mode)
api_token = st.text_input("๐ API Token", type="password")
backend_url = st.text_input("๐ฅ๏ธ Backend URL", value="http://0.0.0.0:8000")
sentiment_model = st.selectbox("๐ Sentiment Model", [
"distilbert-base-uncased-finetuned-sst-2-english",
"nlptown/bert-base-multilingual-uncased-sentiment"
])
industry = st.selectbox("๐ญ Industry Context", [
"Auto-detect", "Generic", "E-commerce", "Healthcare", "Education", "Travel", "Banking", "Insurance", "Gaming", "Food Delivery", "Real Estate", "Fitness", "Entertainment"
])
product_category = st.selectbox("๐งฉ Product Category", [
"Auto-detect", "General", "Mobile Devices", "Laptops", "Healthcare Devices", "Banking App", "Travel Service", "Educational Tool", "Insurance Portal", "Streaming App", "Wearables", "Home Appliances", "Food Apps"
])
device_type = st.selectbox("๐ป Device Type", [
"Auto-detect", "Web", "Android", "iOS", "Desktop", "Smartwatch", "Kiosk"
])
use_aspects = st.checkbox("๐ฌ Enable Aspect Analysis")
use_smart_summary = st.checkbox("๐ง Use Smart Summary (Single)")
use_smart_summary_bulk = st.checkbox("๐ง Smart Summary for Bulk")
verbosity = st.radio("๐ฃ๏ธ Response Style", ["Brief", "Detailed"])
follow_up = st.text_input("๐ Follow-up Question")
voice_lang = st.selectbox("๐ Voice Language", ["en", "fr", "es", "de", "hi", "zh"])
# Text-to-Speech Helper
def speak(text, lang='en'):
tts = gTTS(text, lang=lang)
mp3 = BytesIO()
tts.write_to_fp(mp3)
b64 = base64.b64encode(mp3.getvalue()).decode()
st.markdown(f'', unsafe_allow_html=True)
mp3.seek(0)
return mp3
# Tabs for modes
tab1, tab2 = st.tabs(["๐ง Single Review", "๐ Bulk CSV"])
# --- SINGLE REVIEW MODE ---
with tab1:
st.title("๐ง NeuroPulse AI โ Multimodal Review Analyzer")
st.markdown("""
Minimum 50โ100 words recommended for optimal insights.
""", unsafe_allow_html=True)
review = st.text_area("๐ Enter a Review", value=st.session_state.review, height=180)
col1, col2, col3 = st.columns(3)
with col1:
analyze = st.button("๐ Analyze", use_container_width=True, disabled=not api_token)
with col2:
if st.button("๐ฒ Example", use_container_width=True):
st.session_state.review = "App was smooth, but the transaction failed twice on Android during checkout."
st.rerun()
with col3:
if st.button("๐งน Clear", use_container_width=True):
st.session_state.review = ""
st.rerun()
if analyze and review:
if len(review.split()) < 50:
st.error("โ ๏ธ Please enter at least 50 words for meaningful analysis.")
else:
with st.spinner("Analyzing..."):
try:
payload = {
"text": review,
"model": sentiment_model,
"industry": industry,
"aspects": use_aspects,
"follow_up": follow_up,
"product_category": product_category,
"device": device_type,
"verbosity": verbosity,
"intelligence": st.session_state.intelligence_mode
}
headers = {"X-API-Key": api_token}
params = {"smart": "1"} if use_smart_summary else {}
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers, params=params)
if res.status_code == 200:
data = res.json()
st.success("โ
Analysis Complete")
st.subheader("๐ Summary")
st.info(data["summary"])
st.caption(f"๐ง Summary Type: {'Smart Summary' if use_smart_summary else 'Standard Model'}")
st.markdown(f"**Context:** {industry} | {product_category} | {device_type}")
st.subheader("๐ Audio")
audio = speak(data["summary"], lang=voice_lang)
st.download_button("โฌ๏ธ Download Summary Audio", audio.read(), "summary.mp3", mime="audio/mp3")
st.metric("๐ Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
st.info(f"๐ข Emotion: {data['emotion']}")
if data.get("aspects"):
st.subheader("๐ Aspects")
for a in data["aspects"]:
st.write(f"๐น {a['aspect']}: {a['sentiment']} ({a['score']:.2%})")
if data.get("follow_up"):
st.subheader("๐ง Follow-Up Response")
st.warning(data["follow_up"])
if data.get("explanation"):
st.subheader("๐งฎ Explain This")
st.markdown(data["explanation"])
else:
st.error(f"โ API Error: {res.status_code}")
except Exception as e:
st.error(f"๐ซ {e}")
# --- BULK REVIEW MODE ---
with tab2:
st.title("๐ Bulk CSV Upload")
st.markdown("""
Upload a CSV with the following columns:
review
(required),
industry
, product_category
, device
(optional)
""", unsafe_allow_html=True)
with st.expander("๐ Sample CSV"):
with open("sample_reviews.csv", "rb") as f:
st.download_button("โฌ๏ธ Download sample CSV", f, file_name="sample_reviews.csv")
uploaded_file = st.file_uploader("๐ Upload your CSV", type="csv")
if uploaded_file and api_token:
try:
df = pd.read_csv(uploaded_file)
if "review" not in df.columns:
st.error("CSV must contain a `review` column.")
else:
st.success(f"โ
Loaded {len(df)} reviews")
for col in ["industry", "product_category", "device"]:
if col not in df.columns:
df[col] = [industry if industry != "Auto-detect" else "Generic"] * len(df)
df[col] = df[col].fillna("").astype(str)
if st.button("๐ Analyze Bulk Reviews", use_container_width=True):
with st.spinner("Processing CSV..."):
try:
payload = {
"reviews": df["review"].tolist(),
"model": sentiment_model,
"aspects": use_aspects,
"industry": df["industry"].tolist(),
"product_category": df["product_category"].tolist(),
"device": df["device"].tolist(),
"intelligence": st.session_state.intelligence_mode
}
headers = {"X-API-Key": api_token}
params = {"smart": "1"} if use_smart_summary_bulk else {}
res = requests.post(f"{backend_url}/bulk/", json=payload, headers=headers, params=params)
if res.status_code == 200:
results = pd.DataFrame(res.json()["results"])
results["summary_type"] = "Smart" if use_smart_summary_bulk else "Standard"
st.dataframe(results)
if "sentiment" in results:
fig = px.pie(results, names="sentiment", title="Sentiment Distribution")
st.plotly_chart(fig)
st.download_button("โฌ๏ธ Download Results CSV", results.to_csv(index=False), "bulk_results.csv", mime="text/csv")
else:
st.error(f"โ Bulk Analysis Failed: {res.status_code}")
except Exception as e:
st.error(f"๐ฅ Error: {e}")
except Exception as e:
st.error(f"โ File Error: {e}")