TTS / app.py
Hassan-16's picture
Update app.py
976f3b9 verified
raw
history blame
8.13 kB
from kokoro import KModel, KPipeline
import gradio as gr
import os
import torch
import logging
import soundfile as sf
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configuration
VOICE_DIR = os.path.join(os.path.dirname(__file__), "voices")
OUTPUT_DIR = os.path.join(os.path.dirname(__file__), "output_audio")
TEXT = "Hello, this is a test of the Kokoro TTS system."
# Ensure directories exist
os.makedirs(VOICE_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Device setup
CUDA_AVAILABLE = torch.cuda.is_available()
device = "cuda" if CUDA_AVAILABLE else "cpu"
logger.info(f"Using hardware: {device}")
# Load models for CPU and GPU (if available)
models = {gpu: KModel("hexgrad/Kokoro-82M").to("cuda" if gpu else "cpu").eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
# Define pipelines for American ('a') and British ('b') English
pipelines = {
'a': KPipeline(model=models[False], lang_code='a', device='cpu'), # American English
'b': KPipeline(model=models[False], lang_code='b', device='cpu') # British English
}
# Set custom pronunciations for "kokoro" in both American and British modes
try:
pipelines["a"].g2p.lexicon.golds["kokoro"] = "kหˆOkษ™ษนO"
pipelines["b"].g2p.lexicon.golds["kokoro"] = "kหˆQkษ™ษนQ"
except AttributeError as e:
logger.warning(f"Could not set custom pronunciations: {e}")
def forward_gpu(text, voice_path, speed):
pipeline = pipelines[voice_path[0]]
pipeline.model = models[True] # Switch to GPU model
generator = pipeline(text, voice=voice_path, speed=speed)
for _, _, audio in generator:
return audio
return None
def generate_first(text, voice="af_bella.pt", speed=1, use_gpu=CUDA_AVAILABLE):
voice_path = os.path.join(VOICE_DIR, voice)
if not os.path.exists(voice_path):
raise FileNotFoundError(f"Voice file not found: {voice_path}")
pipeline = pipelines[voice[0]]
use_gpu = use_gpu and CUDA_AVAILABLE
try:
if use_gpu:
audio = forward_gpu(text, voice_path, speed)
else:
pipeline.model = models[False] # Ensure CPU model is used
generator = pipeline(text, voice=voice_path, speed=speed)
for _, ps, audio in generator:
return (24000, audio.numpy()), ps
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info("Retrying with CPU. To avoid this error, change Hardware to CPU.")
pipeline.model = models[False] # Switch to CPU model
generator = pipeline(text, voice=voice_path, speed=speed)
for _, ps, audio in generator:
return (24000, audio.numpy()), ps
else:
raise gr.Error(e)
return None, ""
def predict(text, voice="af_bella.pt", speed=1):
return generate_first(text, voice, speed, use_gpu=False)[0]
def tokenize_first(text, voice="af_bella.pt"):
voice_path = os.path.join(VOICE_DIR, voice)
if not os.path.exists(voice_path):
raise FileNotFoundError(f"Voice file not found: {voice_path}")
pipeline = pipelines[voice[0]]
generator = pipeline(text, voice=voice_path)
for _, ps, _ in generator:
return ps
return ""
def generate_all(text, voice="af_bella.pt", speed=1, use_gpu=CUDA_AVAILABLE):
voice_path = os.path.join(VOICE_DIR, voice)
if not os.path.exists(voice_path):
raise FileNotFoundError(f"Voice file not found: {voice_path}")
pipeline = pipelines[voice[0]]
use_gpu = use_gpu and CUDA_AVAILABLE
first = True
if use_gpu:
pipeline.model = models[True] # Switch to GPU model
else:
pipeline.model = models[False] # Switch to CPU model
generator = pipeline(text, voice=voice_path, speed=speed)
for _, _, audio in generator:
yield 24000, audio.numpy()
if first:
first = False
yield 24000, torch.zeros(1).numpy()
# Dynamically load all .pt voice files from VOICE_DIR
def load_voice_choices():
voice_files = [f for f in os.listdir(VOICE_DIR) if f.endswith('.pt')]
choices = {}
for voice_file in voice_files:
prefix = voice_file[:2]
if prefix == 'af':
label = f"๐Ÿ‡บ๐Ÿ‡ธ ๐Ÿšบ {voice_file[3:-3].capitalize()}"
elif prefix == 'am':
label = f"๐Ÿ‡บ๐Ÿ‡ธ ๐Ÿšน {voice_file[3:-3].capitalize()}"
elif prefix == 'bf':
label = f"๐Ÿ‡ฌ๐Ÿ‡ง ๐Ÿšบ {voice_file[3:-3].capitalize()}"
elif prefix == 'bm':
label = f"๐Ÿ‡ฌ๐Ÿ‡ง ๐Ÿšน {voice_file[3:-3].capitalize()}"
else:
label = f"Unknown {voice_file[:-3]}"
choices[label] = voice_file
return choices
CHOICES = load_voice_choices()
# Log available voices
for label, voice_path in CHOICES.items():
full_path = os.path.join(VOICE_DIR, voice_path)
if not os.path.exists(full_path):
logger.warning(f"Voice file not found: {full_path}")
else:
logger.info(f"Loaded voice: {label} ({voice_path})")
# If no voices are found, add a default fallback
if not CHOICES:
logger.warning("No voice files found in VOICE_DIR. Adding a placeholder.")
CHOICES = {"๐Ÿ‡บ๐Ÿ‡ธ ๐Ÿšบ Bella ๐Ÿ”ฅ": "af_bella.pt"}
TOKEN_NOTE = '''
๐Ÿ’ก Customize pronunciation with Markdown link syntax and /slashes/ like [Kokoro](/kหˆOkษ™ษนO/)
๐Ÿ’ฌ To adjust intonation, try punctuation ;:,.!?โ€”โ€ฆ"()โ€œโ€ or stress หˆ and หŒ
โฌ‡๏ธ Lower stress [1 level](-1) or [2 levels](-2)
โฌ†๏ธ Raise stress 1 level [or](+2) 2 levels (only works on less stressed, usually short words)
'''
with gr.Blocks() as generate_tab:
out_audio = gr.Audio(label="Output Audio", interactive=False, streaming=False, autoplay=True)
generate_btn = gr.Button("Generate", variant="primary")
with gr.Accordion("Output Tokens", open=True):
out_ps = gr.Textbox(interactive=False, show_label=False,
info="Tokens used to generate the audio, up to 510 context length.")
tokenize_btn = gr.Button("Tokenize", variant="secondary")
gr.Markdown(TOKEN_NOTE)
predict_btn = gr.Button("Predict", variant="secondary", visible=False)
with gr.Blocks() as stream_tab:
out_stream = gr.Audio(label="Output Audio Stream", interactive=False, streaming=True, autoplay=True)
with gr.Row():
stream_btn = gr.Button("Stream", variant="primary")
stop_btn = gr.Button("Stop", variant="stop")
with gr.Accordion("Note", open=True):
gr.Markdown("โš ๏ธ There is an unknown Gradio bug that might yield no audio the first time you click Stream.")
gr.DuplicateButton()
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
text = gr.Textbox(label="Input Text", info="Arbitrarily many characters supported")
with gr.Row():
voice = gr.Dropdown(list(CHOICES.items()), value="af_bella.pt" if "af_bella.pt" in CHOICES.values() else list(CHOICES.values())[0], label="Voice",
info="Quality and availability vary by language")
use_gpu = gr.Dropdown(
[("GPU ๐Ÿš€", True), ("CPU ๐ŸŒ", False)],
value=CUDA_AVAILABLE,
label="Hardware",
info="GPU is usually faster, but may require CUDA support",
interactive=CUDA_AVAILABLE
)
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label="Speed")
with gr.Column():
gr.TabbedInterface([generate_tab, stream_tab], ["Generate", "Stream"])
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu],
outputs=[out_audio, out_ps])
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps])
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu], outputs=[out_stream])
stop_btn.click(fn=None, cancels=[stream_event])
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio])
if __name__ == "__main__":
app.queue().launch()