Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ import os
|
|
| 3 |
import torch
|
| 4 |
import logging
|
| 5 |
import soundfile as sf
|
| 6 |
-
import time
|
| 7 |
from kokoro import KModel, KPipeline
|
| 8 |
|
| 9 |
# Configure logging
|
|
@@ -25,13 +24,7 @@ device = "cuda" if CUDA_AVAILABLE else "cpu"
|
|
| 25 |
logger.info(f"Using hardware: {device}")
|
| 26 |
|
| 27 |
# Load a single model instance
|
| 28 |
-
|
| 29 |
-
start_time = time.time()
|
| 30 |
-
model = KModel("hexgrad/Kokoro-82M").to(device).eval()
|
| 31 |
-
logger.info(f"Model loading time: {time.time() - start_time} seconds")
|
| 32 |
-
except Exception as e:
|
| 33 |
-
logger.error(f"Failed to load model: {e}")
|
| 34 |
-
raise
|
| 35 |
|
| 36 |
# Define pipelines for American ('a') and British ('b') English
|
| 37 |
pipelines = {
|
|
@@ -46,81 +39,33 @@ try:
|
|
| 46 |
except AttributeError as e:
|
| 47 |
logger.warning(f"Could not set custom pronunciations: {e}")
|
| 48 |
|
| 49 |
-
# Cache voice choices to avoid repeated file scanning
|
| 50 |
-
VOICE_CHOICES = None
|
| 51 |
-
def load_voice_choices():
|
| 52 |
-
global VOICE_CHOICES
|
| 53 |
-
if VOICE_CHOICES is not None:
|
| 54 |
-
return VOICE_CHOICES
|
| 55 |
-
voice_files = [f for f in os.listdir(VOICE_DIR) if f.endswith('.pt')]
|
| 56 |
-
choices = {}
|
| 57 |
-
for voice_file in voice_files:
|
| 58 |
-
prefix = voice_file[:2]
|
| 59 |
-
if prefix == 'af':
|
| 60 |
-
label = f"πΊπΈ Female: {voice_file[3:-3].capitalize()}"
|
| 61 |
-
elif prefix == 'am':
|
| 62 |
-
label = f"πΊπΈ Male: {voice_file[3:-3].capitalize()}"
|
| 63 |
-
elif prefix == 'bf':
|
| 64 |
-
label = f"π¬π§ Female: {voice_file[3:-3].capitalize()}"
|
| 65 |
-
elif prefix == 'bm':
|
| 66 |
-
label = f"π¬π§ Male: {voice_file[3:-3].capitalize()}"
|
| 67 |
-
else:
|
| 68 |
-
label = f"Unknown: {voice_file[:-3]}"
|
| 69 |
-
choices[label] = voice_file
|
| 70 |
-
if not choices:
|
| 71 |
-
logger.warning("No voice files found in VOICE_DIR. Adding a placeholder.")
|
| 72 |
-
choices = {"πΊπΈ Female: Bella": "af_bella.pt"}
|
| 73 |
-
VOICE_CHOICES = choices
|
| 74 |
-
return choices
|
| 75 |
-
|
| 76 |
-
CHOICES = load_voice_choices()
|
| 77 |
-
|
| 78 |
-
# Log available voices
|
| 79 |
-
for label, voice_path in CHOICES.items():
|
| 80 |
-
full_path = os.path.join(VOICE_DIR, voice_path)
|
| 81 |
-
if not os.path.exists(full_path):
|
| 82 |
-
logger.warning(f"Voice file not found: {full_path}")
|
| 83 |
-
else:
|
| 84 |
-
logger.info(f"Loaded voice: {label} ({voice_path})")
|
| 85 |
-
|
| 86 |
def generate_first(text, voice="af_bella.pt", speed=1, use_gpu=CUDA_AVAILABLE):
|
| 87 |
-
start_time = time.time()
|
| 88 |
-
if len(text) > 510:
|
| 89 |
-
text = text[:510]
|
| 90 |
-
gr.Warning("Text truncated to 510 characters for faster processing.")
|
| 91 |
voice_path = os.path.join(VOICE_DIR, voice)
|
| 92 |
if not os.path.exists(voice_path):
|
| 93 |
-
raise
|
| 94 |
|
| 95 |
pipeline = pipelines[voice[0]]
|
| 96 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
| 97 |
try:
|
| 98 |
-
if not use_gpu and model.device.type != "cpu":
|
| 99 |
-
model.to("cpu")
|
| 100 |
generator = pipeline(text, voice=voice_path, speed=speed)
|
| 101 |
for _, ps, audio in generator:
|
| 102 |
-
logger.info(f"Generation time: {time.time() - start_time} seconds")
|
| 103 |
return (24000, audio.numpy()), ps
|
| 104 |
except gr.exceptions.Error as e:
|
| 105 |
if use_gpu:
|
| 106 |
gr.Warning(str(e))
|
| 107 |
-
gr.Info("Retrying with CPU.")
|
| 108 |
model.to("cpu")
|
| 109 |
generator = pipeline(text, voice=voice_path, speed=speed)
|
| 110 |
for _, ps, audio in generator:
|
| 111 |
-
logger.info(f"Generation time (CPU retry): {time.time() - start_time} seconds")
|
| 112 |
return (24000, audio.numpy()), ps
|
| 113 |
else:
|
| 114 |
raise gr.Error(e)
|
| 115 |
return None, ""
|
| 116 |
|
| 117 |
def tokenize_first(text, voice="af_bella.pt"):
|
| 118 |
-
if len(text) > 510:
|
| 119 |
-
text = text[:510]
|
| 120 |
-
gr.Warning("Text truncated to 510 characters for faster processing.")
|
| 121 |
voice_path = os.path.join(VOICE_DIR, voice)
|
| 122 |
if not os.path.exists(voice_path):
|
| 123 |
-
raise
|
| 124 |
|
| 125 |
pipeline = pipelines[voice[0]]
|
| 126 |
generator = pipeline(text, voice=voice_path)
|
|
@@ -129,146 +74,105 @@ def tokenize_first(text, voice="af_bella.pt"):
|
|
| 129 |
return ""
|
| 130 |
|
| 131 |
def generate_all(text, voice="af_bella.pt", speed=1, use_gpu=CUDA_AVAILABLE):
|
| 132 |
-
start_time = time.time()
|
| 133 |
-
if len(text) > 510:
|
| 134 |
-
text = text[:510]
|
| 135 |
-
gr.Warning("Text truncated to 510 characters for faster processing.")
|
| 136 |
voice_path = os.path.join(VOICE_DIR, voice)
|
| 137 |
if not os.path.exists(voice_path):
|
| 138 |
-
raise
|
| 139 |
|
| 140 |
pipeline = pipelines[voice[0]]
|
| 141 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
| 142 |
-
if not use_gpu and model.device.type != "cpu":
|
| 143 |
-
model.to("cpu")
|
| 144 |
first = True
|
|
|
|
|
|
|
| 145 |
generator = pipeline(text, voice=voice_path, speed=speed)
|
| 146 |
for _, _, audio in generator:
|
| 147 |
yield 24000, audio.numpy()
|
| 148 |
if first:
|
| 149 |
first = False
|
| 150 |
yield 24000, torch.zeros(1).numpy()
|
| 151 |
-
logger.info(f"Streaming generation time: {time.time() - start_time} seconds")
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
-
|
| 161 |
-
gr.Markdown("# Kokoro TTS: Text-to-Speech Generator")
|
| 162 |
-
gr.Markdown("Enter text and select a voice to generate high-quality audio. Adjust speed for faster or slower speech.")
|
| 163 |
-
|
| 164 |
-
with gr.Column():
|
| 165 |
-
text = gr.Textbox(
|
| 166 |
-
label="Input Text",
|
| 167 |
-
value=TEXT,
|
| 168 |
-
placeholder="Type your text here (max 510 characters)",
|
| 169 |
-
lines=3,
|
| 170 |
-
max_lines=5,
|
| 171 |
-
info="Enter text to convert to speech."
|
| 172 |
-
)
|
| 173 |
-
with gr.Row():
|
| 174 |
-
voice = gr.Dropdown(
|
| 175 |
-
choices=list(CHOICES.items()),
|
| 176 |
-
value="af_bella.pt" if "af_bella.pt" in CHOICES.values() else list(CHOICES.values())[0],
|
| 177 |
-
label="Voice",
|
| 178 |
-
info="Choose a voice for the audio output."
|
| 179 |
-
)
|
| 180 |
-
use_gpu = gr.Dropdown(
|
| 181 |
-
choices=[("GPU π (Faster)", True), ("CPU π (Slower)", False)],
|
| 182 |
-
value=CUDA_AVAILABLE,
|
| 183 |
-
label="Hardware",
|
| 184 |
-
info="GPU is faster but requires CUDA support.",
|
| 185 |
-
interactive=CUDA_AVAILABLE
|
| 186 |
-
)
|
| 187 |
-
speed = gr.Slider(
|
| 188 |
-
minimum=0.5,
|
| 189 |
-
maximum=2,
|
| 190 |
-
value=1,
|
| 191 |
-
step=0.1,
|
| 192 |
-
label="Speech Speed",
|
| 193 |
-
info="Adjust the speed of the generated audio (0.5 = slower, 2 = faster)."
|
| 194 |
-
)
|
| 195 |
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
)
|
| 204 |
-
status = gr.Textbox(
|
| 205 |
-
value="Ready to generate audio.",
|
| 206 |
-
label="Status",
|
| 207 |
-
interactive=False
|
| 208 |
-
)
|
| 209 |
-
generate_btn = gr.Button("Generate Audio", variant="primary")
|
| 210 |
-
with gr.Accordion("Pronunciation Tokens", open=False):
|
| 211 |
-
out_ps = gr.Textbox(
|
| 212 |
-
interactive=False,
|
| 213 |
-
show_label=False,
|
| 214 |
-
info="Tokens used to generate the audio."
|
| 215 |
-
)
|
| 216 |
-
tokenize_btn = gr.Button("Show Tokens", variant="secondary")
|
| 217 |
-
gr.Markdown(TOKEN_NOTE)
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
streaming=True,
|
| 224 |
-
autoplay=True
|
| 225 |
-
)
|
| 226 |
-
status_stream = gr.Textbox(
|
| 227 |
-
value="Ready to stream audio.",
|
| 228 |
-
label="Status",
|
| 229 |
-
interactive=False
|
| 230 |
-
)
|
| 231 |
-
with gr.Row():
|
| 232 |
-
stream_btn = gr.Button("Start Streaming", variant="primary")
|
| 233 |
-
stop_btn = gr.Button("Stop Streaming", variant="stop")
|
| 234 |
-
gr.Markdown("β οΈ Streaming may have slight delays due to processing.")
|
| 235 |
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
result, ps = generate_first(text, voice, speed, use_gpu)
|
| 239 |
-
status.value = "Audio generated successfully!" if result else "Failed to generate audio."
|
| 240 |
-
return result, ps
|
| 241 |
|
| 242 |
-
|
| 243 |
-
status.value = "Tokenizing text..."
|
| 244 |
-
result = tokenize_first(text, voice)
|
| 245 |
-
status.value = "Tokenization complete!" if result else "Failed to tokenize."
|
| 246 |
-
return result
|
| 247 |
|
| 248 |
-
|
| 249 |
-
status_stream.value = "Starting audio stream..."
|
| 250 |
-
for audio in generate_all(text, voice, speed, use_gpu):
|
| 251 |
-
yield audio
|
| 252 |
-
status_stream.value = "Streaming complete!"
|
| 253 |
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
)
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
stop_btn.click(fn=None, cancels=[stream_event])
|
| 270 |
|
| 271 |
if __name__ == "__main__":
|
| 272 |
-
|
| 273 |
-
app.launch(queue=False)
|
| 274 |
-
logger.info("Gradio app started.")
|
|
|
|
| 3 |
import torch
|
| 4 |
import logging
|
| 5 |
import soundfile as sf
|
|
|
|
| 6 |
from kokoro import KModel, KPipeline
|
| 7 |
|
| 8 |
# Configure logging
|
|
|
|
| 24 |
logger.info(f"Using hardware: {device}")
|
| 25 |
|
| 26 |
# Load a single model instance
|
| 27 |
+
model = KModel("hexgrad/Kokoro-82M").to(device).eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
# Define pipelines for American ('a') and British ('b') English
|
| 30 |
pipelines = {
|
|
|
|
| 39 |
except AttributeError as e:
|
| 40 |
logger.warning(f"Could not set custom pronunciations: {e}")
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
def generate_first(text, voice="af_bella.pt", speed=1, use_gpu=CUDA_AVAILABLE):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
voice_path = os.path.join(VOICE_DIR, voice)
|
| 44 |
if not os.path.exists(voice_path):
|
| 45 |
+
raise FileNotFoundError(f"Voice file not found: {voice_path}")
|
| 46 |
|
| 47 |
pipeline = pipelines[voice[0]]
|
| 48 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
| 49 |
try:
|
|
|
|
|
|
|
| 50 |
generator = pipeline(text, voice=voice_path, speed=speed)
|
| 51 |
for _, ps, audio in generator:
|
|
|
|
| 52 |
return (24000, audio.numpy()), ps
|
| 53 |
except gr.exceptions.Error as e:
|
| 54 |
if use_gpu:
|
| 55 |
gr.Warning(str(e))
|
| 56 |
+
gr.Info("Retrying with CPU. To avoid this error, change Hardware to CPU.")
|
| 57 |
model.to("cpu")
|
| 58 |
generator = pipeline(text, voice=voice_path, speed=speed)
|
| 59 |
for _, ps, audio in generator:
|
|
|
|
| 60 |
return (24000, audio.numpy()), ps
|
| 61 |
else:
|
| 62 |
raise gr.Error(e)
|
| 63 |
return None, ""
|
| 64 |
|
| 65 |
def tokenize_first(text, voice="af_bella.pt"):
|
|
|
|
|
|
|
|
|
|
| 66 |
voice_path = os.path.join(VOICE_DIR, voice)
|
| 67 |
if not os.path.exists(voice_path):
|
| 68 |
+
raise FileNotFoundError(f"Voice file not found: {voice_path}")
|
| 69 |
|
| 70 |
pipeline = pipelines[voice[0]]
|
| 71 |
generator = pipeline(text, voice=voice_path)
|
|
|
|
| 74 |
return ""
|
| 75 |
|
| 76 |
def generate_all(text, voice="af_bella.pt", speed=1, use_gpu=CUDA_AVAILABLE):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
voice_path = os.path.join(VOICE_DIR, voice)
|
| 78 |
if not os.path.exists(voice_path):
|
| 79 |
+
raise FileNotFoundError(f"Voice file not found: {voice_path}")
|
| 80 |
|
| 81 |
pipeline = pipelines[voice[0]]
|
| 82 |
use_gpu = use_gpu and CUDA_AVAILABLE
|
|
|
|
|
|
|
| 83 |
first = True
|
| 84 |
+
if not use_gpu:
|
| 85 |
+
model.to("cpu")
|
| 86 |
generator = pipeline(text, voice=voice_path, speed=speed)
|
| 87 |
for _, _, audio in generator:
|
| 88 |
yield 24000, audio.numpy()
|
| 89 |
if first:
|
| 90 |
first = False
|
| 91 |
yield 24000, torch.zeros(1).numpy()
|
|
|
|
| 92 |
|
| 93 |
+
# Dynamically load .pt voice files from VOICE_DIR
|
| 94 |
+
def load_voice_choices():
|
| 95 |
+
voice_files = [f for f in os.listdir(VOICE_DIR) if f.endswith('.pt')]
|
| 96 |
+
choices = {}
|
| 97 |
+
for voice_file in voice_files:
|
| 98 |
+
prefix = voice_file[:2]
|
| 99 |
+
if prefix == 'af':
|
| 100 |
+
label = f"πΊπΈ πΊ {voice_file[3:-3].capitalize()}"
|
| 101 |
+
elif prefix == 'am':
|
| 102 |
+
label = f"πΊπΈ πΉ {voice_file[3:-3].capitalize()}"
|
| 103 |
+
elif prefix == 'bf':
|
| 104 |
+
label = f"π¬π§ πΊ {voice_file[3:-3].capitalize()}"
|
| 105 |
+
elif prefix == 'bm':
|
| 106 |
+
label = f"π¬π§ πΉ {voice_file[3:-3].capitalize()}"
|
| 107 |
+
else:
|
| 108 |
+
label = f"Unknown {voice_file[:-3]}"
|
| 109 |
+
choices[label] = voice_file
|
| 110 |
+
return choices
|
| 111 |
|
| 112 |
+
CHOICES = load_voice_choices()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
+
# Log available voices
|
| 115 |
+
for label, voice_path in CHOICES.items():
|
| 116 |
+
full_path = os.path.join(VOICE_DIR, voice_path)
|
| 117 |
+
if not os.path.exists(full_path):
|
| 118 |
+
logger.warning(f"Voice file not found: {full_path}")
|
| 119 |
+
else:
|
| 120 |
+
logger.info(f"Loaded voice: {label} ({voice_path})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
+
# If no voices are found, add a default fallback
|
| 123 |
+
if not CHOICES:
|
| 124 |
+
logger.warning("No voice files found in VOICE_DIR. Adding a placeholder.")
|
| 125 |
+
CHOICES = {"πΊπΈ πΊ Bella π₯": "af_bella.pt"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
TOKEN_NOTE = '''
|
| 128 |
+
π‘ Customize pronunciation with Markdown link syntax and /slashes/ like [Kokoro](/kΛOkΙΙΉO/)
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
π¬ To adjust intonation, try punctuation ;:,.!?ββ¦"()ββ or stress Λ and Λ
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
+
β¬οΈ Lower stress [1 level](-1) or [2 levels](-2)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
+
β¬οΈ Raise stress 1 level [or](+2) 2 levels (only works on less stressed, usually short words)
|
| 135 |
+
'''
|
| 136 |
+
|
| 137 |
+
with gr.Blocks() as generate_tab:
|
| 138 |
+
out_audio = gr.Audio(label="Output Audio", interactive=False, streaming=False, autoplay=True)
|
| 139 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
| 140 |
+
with gr.Accordion("Output Tokens", open=True):
|
| 141 |
+
out_ps = gr.Textbox(interactive=False, show_label=False,
|
| 142 |
+
info="Tokens used to generate the audio, up to 510 context length.")
|
| 143 |
+
tokenize_btn = gr.Button("Tokenize", variant="secondary")
|
| 144 |
+
gr.Markdown(TOKEN_NOTE)
|
| 145 |
+
|
| 146 |
+
with gr.Blocks() as stream_tab:
|
| 147 |
+
out_stream = gr.Audio(label="Output Audio Stream", interactive=False, streaming=True, autoplay=True)
|
| 148 |
+
with gr.Row():
|
| 149 |
+
stream_btn = gr.Button("Stream", variant="primary")
|
| 150 |
+
stop_btn = gr.Button("Stop", variant="stop")
|
| 151 |
+
with gr.Accordion("Note", open=True):
|
| 152 |
+
gr.Markdown("β οΈ There may be delays in streaming audio due to processing limitations.")
|
| 153 |
+
|
| 154 |
+
with gr.Blocks() as app:
|
| 155 |
+
with gr.Row():
|
| 156 |
+
with gr.Column():
|
| 157 |
+
text = gr.Textbox(label="Input Text", info="Arbitrarily many characters supported")
|
| 158 |
+
with gr.Row():
|
| 159 |
+
voice = gr.Dropdown(list(CHOICES.items()), value="af_bella.pt" if "af_bella.pt" in CHOICES.values() else list(CHOICES.values())[0], label="Voice",
|
| 160 |
+
info="Quality and availability vary by language")
|
| 161 |
+
use_gpu = gr.Dropdown(
|
| 162 |
+
[("GPU οΏ½-held", True), ("CPU π", False)],
|
| 163 |
+
value=CUDA_AVAILABLE,
|
| 164 |
+
label="Hardware",
|
| 165 |
+
info="GPU is usually faster, but may require CUDA support",
|
| 166 |
+
interactive=CUDA_AVAILABLE
|
| 167 |
+
)
|
| 168 |
+
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label="Speed")
|
| 169 |
+
with gr.Column():
|
| 170 |
+
gr.TabbedInterface([generate_tab, stream_tab], ["Generate", "Stream"])
|
| 171 |
+
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu],
|
| 172 |
+
outputs=[out_audio, out_ps])
|
| 173 |
+
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps])
|
| 174 |
+
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu], outputs=[out_stream])
|
| 175 |
stop_btn.click(fn=None, cancels=[stream_event])
|
| 176 |
|
| 177 |
if __name__ == "__main__":
|
| 178 |
+
app.queue().launch()
|
|
|
|
|
|