Update app.py
Browse files
app.py
CHANGED
@@ -1,257 +1,15 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
# Configuration
|
17 |
-
VOICE_DIR = r"D:\New folder (2)\model\voices"
|
18 |
-
OUTPUT_DIR = r"D:\New folder (2)\output_audio"
|
19 |
-
TEXT = "Hello, this is a test of the Kokoro TTS system."
|
20 |
-
|
21 |
-
# Configure logging
|
22 |
-
logging.basicConfig(level=logging.INFO)
|
23 |
-
logger = logging.getLogger(__name__)
|
24 |
-
|
25 |
-
# Device setup
|
26 |
-
CUDA_AVAILABLE = torch.cuda.is_available()
|
27 |
-
device = "cuda" if CUDA_AVAILABLE else "cpu"
|
28 |
-
logger.info(f"Using hardware: {device}")
|
29 |
-
|
30 |
-
# Load models for CPU and GPU (if available)
|
31 |
-
models = {gpu: KModel("hexgrad/Kokoro-82M").to("cuda" if gpu else "cpu").eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
|
32 |
-
|
33 |
-
# Define pipelines for American ('a') and British ('b') English
|
34 |
-
pipelines = {
|
35 |
-
'a': KPipeline(model=models[False], lang_code='a', device='cpu'), # American English
|
36 |
-
'b': KPipeline(model=models[False], lang_code='b', device='cpu') # British English
|
37 |
-
}
|
38 |
-
|
39 |
-
# Set custom pronunciations for "kokoro" in both American and British modes
|
40 |
-
try:
|
41 |
-
pipelines["a"].g2p.lexicon.golds["kokoro"] = "kˈOkəɹO"
|
42 |
-
pipelines["b"].g2p.lexicon.golds["kokoro"] = "kˈQkəɹQ"
|
43 |
-
except AttributeError as e:
|
44 |
-
logger.warning(f"Could not set custom pronunciations: {e}")
|
45 |
-
|
46 |
-
def forward_gpu(text, voice_path, speed):
|
47 |
-
# Use the GPU model directly without spaces.GPU decorator
|
48 |
-
pipeline = pipelines[voice_path[0]]
|
49 |
-
# Ensure the pipeline uses the GPU model
|
50 |
-
pipeline.model = models[True] # Switch to GPU model
|
51 |
-
generator = pipeline(text, voice=voice_path, speed=speed)
|
52 |
-
for _, _, audio in generator:
|
53 |
-
return audio
|
54 |
-
return None
|
55 |
-
|
56 |
-
def generate_first(text, voice="af_bella.pt", speed=1, use_gpu=CUDA_AVAILABLE, clone_voice_file=None):
|
57 |
-
voice_path = os.path.join(VOICE_DIR, voice)
|
58 |
-
if not os.path.exists(voice_path):
|
59 |
-
raise FileNotFoundError(f"Voice file not found: {voice_path}")
|
60 |
-
|
61 |
-
pipeline = pipelines[voice[0]]
|
62 |
-
|
63 |
-
# If a clone file is provided and the encoder is available, try to clone the voice
|
64 |
-
if clone_voice_file is not None and encoder is not None:
|
65 |
-
try:
|
66 |
-
# clone_voice_file is a file path (string) in Gradio with type="filepath"
|
67 |
-
wav = preprocess_wav(clone_voice_file)
|
68 |
-
cloned_voice = torch.tensor(encoder.embed_utterance(wav), device=device).unsqueeze(0)
|
69 |
-
temp_voice_path = os.path.join(VOICE_DIR, "cloned_voice.pt")
|
70 |
-
torch.save(cloned_voice, temp_voice_path)
|
71 |
-
voice_path = temp_voice_path
|
72 |
-
except Exception as e:
|
73 |
-
logger.error(f"Error cloning voice: {e}")
|
74 |
-
voice_path = os.path.join(VOICE_DIR, voice)
|
75 |
-
|
76 |
-
use_gpu = use_gpu and CUDA_AVAILABLE
|
77 |
-
try:
|
78 |
-
if use_gpu:
|
79 |
-
audio = forward_gpu(text, voice_path, speed)
|
80 |
-
else:
|
81 |
-
pipeline.model = models[False] # Ensure CPU model is used
|
82 |
-
generator = pipeline(text, voice=voice_path, speed=speed)
|
83 |
-
for _, ps, audio in generator:
|
84 |
-
return (24000, audio.numpy()), ps
|
85 |
-
except gr.exceptions.Error as e:
|
86 |
-
if use_gpu:
|
87 |
-
gr.Warning(str(e))
|
88 |
-
gr.Info("Retrying with CPU. To avoid this error, change Hardware to CPU.")
|
89 |
-
pipeline.model = models[False] # Switch to CPU model
|
90 |
-
generator = pipeline(text, voice=voice_path, speed=speed)
|
91 |
-
for _, ps, audio in generator:
|
92 |
-
return (24000, audio.numpy()), ps
|
93 |
-
else:
|
94 |
-
raise gr.Error(e)
|
95 |
-
return None, ""
|
96 |
-
|
97 |
-
def predict(text, voice="af_bella.pt", speed=1):
|
98 |
-
return generate_first(text, voice, speed, use_gpu=False)[0]
|
99 |
-
|
100 |
-
def tokenize_first(text, voice="af_bella.pt"):
|
101 |
-
voice_path = os.path.join(VOICE_DIR, voice)
|
102 |
-
if not os.path.exists(voice_path):
|
103 |
-
raise FileNotFoundError(f"Voice file not found: {voice_path}")
|
104 |
-
|
105 |
-
pipeline = pipelines[voice[0]]
|
106 |
-
generator = pipeline(text, voice=voice_path)
|
107 |
-
for _, ps, _ in generator:
|
108 |
-
return ps
|
109 |
-
return ""
|
110 |
-
|
111 |
-
def generate_all(text, voice="af_bella.pt", speed=1, use_gpu=CUDA_AVAILABLE):
|
112 |
-
voice_path = os.path.join(VOICE_DIR, voice)
|
113 |
-
if not os.path.exists(voice_path):
|
114 |
-
raise FileNotFoundError(f"Voice file not found: {voice_path}")
|
115 |
-
|
116 |
-
pipeline = pipelines[voice[0]]
|
117 |
-
use_gpu = use_gpu and CUDA_AVAILABLE
|
118 |
-
first = True
|
119 |
-
if use_gpu:
|
120 |
-
pipeline.model = models[True] # Switch to GPU model
|
121 |
-
else:
|
122 |
-
pipeline.model = models[False] # Switch to CPU model
|
123 |
-
generator = pipeline(text, voice=voice_path, speed=speed)
|
124 |
-
for _, _, audio in generator:
|
125 |
-
yield 24000, audio.numpy()
|
126 |
-
if first:
|
127 |
-
first = False
|
128 |
-
yield 24000, torch.zeros(1).numpy()
|
129 |
-
|
130 |
-
# Load random quotes and sample texts
|
131 |
-
try:
|
132 |
-
with open("en.txt", "r") as r:
|
133 |
-
random_quotes = [line.strip() for line in r]
|
134 |
-
except FileNotFoundError:
|
135 |
-
random_quotes = ["Hello, this is a test of the Kokoro TTS system."]
|
136 |
-
|
137 |
-
def get_random_quote():
|
138 |
-
return random.choice(random_quotes)
|
139 |
-
|
140 |
-
def get_gatsby():
|
141 |
-
try:
|
142 |
-
with open("gatsby5k.md", "r") as r:
|
143 |
-
return r.read().strip()
|
144 |
-
except FileNotFoundError:
|
145 |
-
return "The Great Gatsby text not found."
|
146 |
-
|
147 |
-
def get_frankenstein():
|
148 |
-
try:
|
149 |
-
with open("frankenstein5k.md", "r") as r:
|
150 |
-
return r.read().strip()
|
151 |
-
except FileNotFoundError:
|
152 |
-
return "Frankenstein text not found."
|
153 |
-
|
154 |
-
# Dynamically load all .pt voice files from VOICE_DIR
|
155 |
-
def load_voice_choices():
|
156 |
-
voice_files = [f for f in os.listdir(VOICE_DIR) if f.endswith('.pt')]
|
157 |
-
choices = {}
|
158 |
-
for voice_file in voice_files:
|
159 |
-
# Determine the voice type based on the prefix
|
160 |
-
prefix = voice_file[:2]
|
161 |
-
if prefix == 'af':
|
162 |
-
label = f"🇺🇸 🚺 {voice_file[3:-3].capitalize()}"
|
163 |
-
elif prefix == 'am':
|
164 |
-
label = f"🇺🇸 🚹 {voice_file[3:-3].capitalize()}"
|
165 |
-
elif prefix == 'bf':
|
166 |
-
label = f"🇬🇧 🚺 {voice_file[3:-3].capitalize()}"
|
167 |
-
elif prefix == 'bm':
|
168 |
-
label = f"🇬🇧 🚹 {voice_file[3:-3].capitalize()}"
|
169 |
-
else:
|
170 |
-
label = f"Unknown {voice_file[:-3]}"
|
171 |
-
choices[label] = voice_file
|
172 |
-
return choices
|
173 |
-
|
174 |
-
CHOICES = load_voice_choices()
|
175 |
-
|
176 |
-
# Log available voices
|
177 |
-
for label, voice_path in CHOICES.items():
|
178 |
-
full_path = os.path.join(VOICE_DIR, voice_path)
|
179 |
-
if not os.path.exists(full_path):
|
180 |
-
logger.warning(f"Voice file not found: {full_path}")
|
181 |
-
else:
|
182 |
-
logger.info(f"Loaded voice: {label} ({voice_path})")
|
183 |
-
|
184 |
-
# If no voices are found, add a default fallback
|
185 |
-
if not CHOICES:
|
186 |
-
logger.warning("No voice files found in VOICE_DIR. Adding a placeholder.")
|
187 |
-
CHOICES = {"🇺🇸 🚺 Bella 🔥": "af_bella.pt"}
|
188 |
-
|
189 |
-
TOKEN_NOTE = '''
|
190 |
-
💡 Customize pronunciation with Markdown link syntax and /slashes/ like [Kokoro](/kˈOkəɹO/)
|
191 |
-
|
192 |
-
💬 To adjust intonation, try punctuation ;:,.!?—…"()“” or stress ˈ and ˌ
|
193 |
-
|
194 |
-
⬇️ Lower stress [1 level](-1) or [2 levels](-2)
|
195 |
-
|
196 |
-
⬆️ Raise stress 1 level [or](+2) 2 levels (only works on less stressed, usually short words)
|
197 |
-
'''
|
198 |
-
|
199 |
-
with gr.Blocks() as generate_tab:
|
200 |
-
out_audio = gr.Audio(label="Output Audio", interactive=False, streaming=False, autoplay=True)
|
201 |
-
generate_btn = gr.Button("Generate", variant="primary")
|
202 |
-
with gr.Accordion("Output Tokens", open=True):
|
203 |
-
out_ps = gr.Textbox(interactive=False, show_label=False,
|
204 |
-
info="Tokens used to generate the audio, up to 510 context length.")
|
205 |
-
tokenize_btn = gr.Button("Tokenize", variant="secondary")
|
206 |
-
gr.Markdown(TOKEN_NOTE)
|
207 |
-
predict_btn = gr.Button("Predict", variant="secondary", visible=False)
|
208 |
-
|
209 |
-
with gr.Blocks() as stream_tab:
|
210 |
-
out_stream = gr.Audio(label="Output Audio Stream", interactive=False, streaming=True, autoplay=True)
|
211 |
-
with gr.Row():
|
212 |
-
stream_btn = gr.Button("Stream", variant="primary")
|
213 |
-
stop_btn = gr.Button("Stop", variant="stop")
|
214 |
-
with gr.Accordion("Note", open=True):
|
215 |
-
gr.Markdown("⚠️ There is an unknown Gradio bug that might yield no audio the first time you click Stream.")
|
216 |
-
gr.DuplicateButton()
|
217 |
-
|
218 |
-
API_OPEN = True
|
219 |
-
with gr.Blocks() as app:
|
220 |
-
with gr.Row():
|
221 |
-
with gr.Column():
|
222 |
-
text = gr.Textbox(label="Input Text", info="Arbitrarily many characters supported")
|
223 |
-
with gr.Row():
|
224 |
-
voice = gr.Dropdown(list(CHOICES.items()), value="af_bella.pt" if "af_bella.pt" in CHOICES.values() else list(CHOICES.values())[0], label="Voice",
|
225 |
-
info="Quality and availability vary by language")
|
226 |
-
use_gpu = gr.Dropdown(
|
227 |
-
[("GPU 🚀", True), ("CPU 🐌", False)],
|
228 |
-
value=CUDA_AVAILABLE,
|
229 |
-
label="Hardware",
|
230 |
-
info="GPU is usually faster, but may require CUDA support",
|
231 |
-
interactive=CUDA_AVAILABLE
|
232 |
-
)
|
233 |
-
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label="Speed")
|
234 |
-
clone_voice_file = gr.File(label="Clone Voice Sample (Optional)", file_count="single", type="filepath")
|
235 |
-
random_btn = gr.Button("🎲 Random Quote 💬", variant="secondary")
|
236 |
-
with gr.Row():
|
237 |
-
gatsby_btn = gr.Button("🥂 Gatsby 📕", variant="secondary")
|
238 |
-
frankenstein_btn = gr.Button("💀 Frankenstein 📗", variant="secondary")
|
239 |
-
with gr.Column():
|
240 |
-
gr.TabbedInterface([generate_tab, stream_tab], ["Generate", "Stream"])
|
241 |
-
random_btn.click(fn=get_random_quote, inputs=[], outputs=[text])
|
242 |
-
gatsby_btn.click(fn=get_gatsby, inputs=[], outputs=[text])
|
243 |
-
frankenstein_btn.click(fn=get_frankenstein, inputs=[], outputs=[text])
|
244 |
-
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu, clone_voice_file],
|
245 |
-
outputs=[out_audio, out_ps])
|
246 |
-
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps])
|
247 |
-
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu], outputs=[out_stream])
|
248 |
-
stop_btn.click(fn=None, cancels=[stream_event])
|
249 |
-
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio])
|
250 |
-
|
251 |
-
if __name__ == "__main__":
|
252 |
-
app.queue(api_open=API_OPEN).launch(
|
253 |
-
server_name="127.0.0.1",
|
254 |
-
server_port=40001,
|
255 |
-
show_api=API_OPEN,
|
256 |
-
inbrowser=True
|
257 |
-
)
|
|
|
1 |
+
import os
|
2 |
+
import zipfile
|
3 |
+
|
4 |
+
# Path to the zip file and extraction directory
|
5 |
+
zip_path = "model/kokoro-v1_0.zip"
|
6 |
+
extract_dir = "model/"
|
7 |
+
|
8 |
+
# Check if the zip file exists and extract it
|
9 |
+
if os.path.exists(zip_path):
|
10 |
+
print(f"Extracting {zip_path}...")
|
11 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
12 |
+
zip_ref.extractall(extract_dir)
|
13 |
+
print(f"Extraction completed. Files extracted to {extract_dir}")
|
14 |
+
else:
|
15 |
+
print(f"File {zip_path} does not exist.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|