Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,23 @@
|
|
1 |
from kokoro import KModel, KPipeline
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
-
import random
|
5 |
import torch
|
6 |
import logging
|
7 |
-
|
8 |
-
# Configuration
|
9 |
-
VOICE_DIR = "model/voices"
|
10 |
-
OUTPUT_DIR = "output_audio"
|
11 |
-
TEXT = "Hello, this is a test of the Kokoro TTS system."
|
12 |
|
13 |
# Configure logging
|
14 |
logging.basicConfig(level=logging.INFO)
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# Device setup
|
18 |
CUDA_AVAILABLE = torch.cuda.is_available()
|
19 |
device = "cuda" if CUDA_AVAILABLE else "cpu"
|
@@ -35,10 +39,9 @@ try:
|
|
35 |
except AttributeError as e:
|
36 |
logger.warning(f"Could not set custom pronunciations: {e}")
|
37 |
|
38 |
-
# Core functions for voice generation
|
39 |
def forward_gpu(text, voice_path, speed):
|
40 |
pipeline = pipelines[voice_path[0]]
|
41 |
-
pipeline.model = models[True] #
|
42 |
generator = pipeline(text, voice=voice_path, speed=speed)
|
43 |
for _, _, audio in generator:
|
44 |
return audio
|
@@ -55,52 +58,138 @@ def generate_first(text, voice="af_bella.pt", speed=1, use_gpu=CUDA_AVAILABLE):
|
|
55 |
if use_gpu:
|
56 |
audio = forward_gpu(text, voice_path, speed)
|
57 |
else:
|
58 |
-
pipeline.model = models[False]
|
59 |
generator = pipeline(text, voice=voice_path, speed=speed)
|
60 |
for _, ps, audio in generator:
|
61 |
return (24000, audio.numpy()), ps
|
62 |
except gr.exceptions.Error as e:
|
63 |
if use_gpu:
|
64 |
gr.Warning(str(e))
|
65 |
-
|
|
|
66 |
generator = pipeline(text, voice=voice_path, speed=speed)
|
67 |
-
for _, ps, audio in generator:
|
68 |
-
|
69 |
-
|
70 |
else:
|
71 |
raise gr.Error(e)
|
72 |
return None, ""
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def load_voice_choices():
|
76 |
-
if not os.path.exists(VOICE_DIR):
|
77 |
-
os.makedirs(VOICE_DIR)
|
78 |
voice_files = [f for f in os.listdir(VOICE_DIR) if f.endswith('.pt')]
|
79 |
-
choices = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
return choices
|
81 |
|
82 |
CHOICES = load_voice_choices()
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
if not CHOICES:
|
85 |
logger.warning("No voice files found in VOICE_DIR. Adding a placeholder.")
|
86 |
-
CHOICES = {"Bella": "af_bella.pt"}
|
87 |
|
88 |
TOKEN_NOTE = '''
|
89 |
๐ก Customize pronunciation with Markdown link syntax and /slashes/ like [Kokoro](/kหOkษษนO/)
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
91 |
'''
|
92 |
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
with gr.Row():
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
generate_btn.click(fn=generate_first, inputs=[text, voice, speed], outputs=[output_audio])
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from kokoro import KModel, KPipeline
|
2 |
import gradio as gr
|
3 |
import os
|
|
|
4 |
import torch
|
5 |
import logging
|
6 |
+
import soundfile as sf
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Configure logging
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
+
# Configuration
|
13 |
+
VOICE_DIR = os.path.join(os.path.dirname(__file__), "voices")
|
14 |
+
OUTPUT_DIR = os.path.join(os.path.dirname(__file__), "output_audio")
|
15 |
+
TEXT = "Hello, this is a test of the Kokoro TTS system."
|
16 |
+
|
17 |
+
# Ensure directories exist
|
18 |
+
os.makedirs(VOICE_DIR, exist_ok=True)
|
19 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
20 |
+
|
21 |
# Device setup
|
22 |
CUDA_AVAILABLE = torch.cuda.is_available()
|
23 |
device = "cuda" if CUDA_AVAILABLE else "cpu"
|
|
|
39 |
except AttributeError as e:
|
40 |
logger.warning(f"Could not set custom pronunciations: {e}")
|
41 |
|
|
|
42 |
def forward_gpu(text, voice_path, speed):
|
43 |
pipeline = pipelines[voice_path[0]]
|
44 |
+
pipeline.model = models[True] # Switch to GPU model
|
45 |
generator = pipeline(text, voice=voice_path, speed=speed)
|
46 |
for _, _, audio in generator:
|
47 |
return audio
|
|
|
58 |
if use_gpu:
|
59 |
audio = forward_gpu(text, voice_path, speed)
|
60 |
else:
|
61 |
+
pipeline.model = models[False] # Ensure CPU model is used
|
62 |
generator = pipeline(text, voice=voice_path, speed=speed)
|
63 |
for _, ps, audio in generator:
|
64 |
return (24000, audio.numpy()), ps
|
65 |
except gr.exceptions.Error as e:
|
66 |
if use_gpu:
|
67 |
gr.Warning(str(e))
|
68 |
+
gr.Info("Retrying with CPU. To avoid this error, change Hardware to CPU.")
|
69 |
+
pipeline.model = models[False] # Switch to CPU model
|
70 |
generator = pipeline(text, voice=voice_path, speed=speed)
|
71 |
+
for _, ps, audio in generator:
|
72 |
+
return (24000, audio.numpy()), ps
|
|
|
73 |
else:
|
74 |
raise gr.Error(e)
|
75 |
return None, ""
|
76 |
|
77 |
+
def predict(text, voice="af_bella.pt", speed=1):
|
78 |
+
return generate_first(text, voice, speed, use_gpu=False)[0]
|
79 |
+
|
80 |
+
def tokenize_first(text, voice="af_bella.pt"):
|
81 |
+
voice_path = os.path.join(VOICE_DIR, voice)
|
82 |
+
if not os.path.exists(voice_path):
|
83 |
+
raise FileNotFoundError(f"Voice file not found: {voice_path}")
|
84 |
+
|
85 |
+
pipeline = pipelines[voice[0]]
|
86 |
+
generator = pipeline(text, voice=voice_path)
|
87 |
+
for _, ps, _ in generator:
|
88 |
+
return ps
|
89 |
+
return ""
|
90 |
+
|
91 |
+
def generate_all(text, voice="af_bella.pt", speed=1, use_gpu=CUDA_AVAILABLE):
|
92 |
+
voice_path = os.path.join(VOICE_DIR, voice)
|
93 |
+
if not os.path.exists(voice_path):
|
94 |
+
raise FileNotFoundError(f"Voice file not found: {voice_path}")
|
95 |
+
|
96 |
+
pipeline = pipelines[voice[0]]
|
97 |
+
use_gpu = use_gpu and CUDA_AVAILABLE
|
98 |
+
first = True
|
99 |
+
if use_gpu:
|
100 |
+
pipeline.model = models[True] # Switch to GPU model
|
101 |
+
else:
|
102 |
+
pipeline.model = models[False] # Switch to CPU model
|
103 |
+
generator = pipeline(text, voice=voice_path, speed=speed)
|
104 |
+
for _, _, audio in generator:
|
105 |
+
yield 24000, audio.numpy()
|
106 |
+
if first:
|
107 |
+
first = False
|
108 |
+
yield 24000, torch.zeros(1).numpy()
|
109 |
+
|
110 |
+
# Dynamically load all .pt voice files from VOICE_DIR
|
111 |
def load_voice_choices():
|
|
|
|
|
112 |
voice_files = [f for f in os.listdir(VOICE_DIR) if f.endswith('.pt')]
|
113 |
+
choices = {}
|
114 |
+
for voice_file in voice_files:
|
115 |
+
prefix = voice_file[:2]
|
116 |
+
if prefix == 'af':
|
117 |
+
label = f"๐บ๐ธ ๐บ {voice_file[3:-3].capitalize()}"
|
118 |
+
elif prefix == 'am':
|
119 |
+
label = f"๐บ๐ธ ๐น {voice_file[3:-3].capitalize()}"
|
120 |
+
elif prefix == 'bf':
|
121 |
+
label = f"๐ฌ๐ง ๐บ {voice_file[3:-3].capitalize()}"
|
122 |
+
elif prefix == 'bm':
|
123 |
+
label = f"๐ฌ๐ง ๐น {voice_file[3:-3].capitalize()}"
|
124 |
+
else:
|
125 |
+
label = f"Unknown {voice_file[:-3]}"
|
126 |
+
choices[label] = voice_file
|
127 |
return choices
|
128 |
|
129 |
CHOICES = load_voice_choices()
|
130 |
|
131 |
+
# Log available voices
|
132 |
+
for label, voice_path in CHOICES.items():
|
133 |
+
full_path = os.path.join(VOICE_DIR, voice_path)
|
134 |
+
if not os.path.exists(full_path):
|
135 |
+
logger.warning(f"Voice file not found: {full_path}")
|
136 |
+
else:
|
137 |
+
logger.info(f"Loaded voice: {label} ({voice_path})")
|
138 |
+
|
139 |
+
# If no voices are found, add a default fallback
|
140 |
if not CHOICES:
|
141 |
logger.warning("No voice files found in VOICE_DIR. Adding a placeholder.")
|
142 |
+
CHOICES = {"๐บ๐ธ ๐บ Bella ๐ฅ": "af_bella.pt"}
|
143 |
|
144 |
TOKEN_NOTE = '''
|
145 |
๐ก Customize pronunciation with Markdown link syntax and /slashes/ like [Kokoro](/kหOkษษนO/)
|
146 |
+
|
147 |
+
๐ฌ To adjust intonation, try punctuation ;:,.!?โโฆ"()โโ or stress ห and ห
|
148 |
+
|
149 |
+
โฌ๏ธ Lower stress [1 level](-1) or [2 levels](-2)
|
150 |
+
|
151 |
+
โฌ๏ธ Raise stress 1 level [or](+2) 2 levels (only works on less stressed, usually short words)
|
152 |
'''
|
153 |
|
154 |
+
with gr.Blocks() as generate_tab:
|
155 |
+
out_audio = gr.Audio(label="Output Audio", interactive=False, streaming=False, autoplay=True)
|
156 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
157 |
+
with gr.Accordion("Output Tokens", open=True):
|
158 |
+
out_ps = gr ััััTextbox(interactive=False, show_label=False,
|
159 |
+
info="Tokens used to generate the audio, up to 510 context length.")
|
160 |
+
tokenize_btn = gr.Button("Tokenize", variant="secondary")
|
161 |
+
gr.Markdown(TOKEN_NOTE)
|
162 |
+
predict_btn = gr.Button("Predict", variant="secondary", visible=False)
|
163 |
+
|
164 |
+
with gr.Blocks() as stream_tab:
|
165 |
+
out_stream = gr.Audio(label="Output Audio Stream", interactive=False, streaming=True, autoplay=True)
|
166 |
with gr.Row():
|
167 |
+
stream_btn = gr.Button("Stream", variant="primary")
|
168 |
+
stop_btn = gr.Button("Stop", variant="stop")
|
169 |
+
with gr.Accordion("Note", open=True):
|
170 |
+
gr.Markdown("โ ๏ธ There is an unknown Gradio bug that might yield no audio the first time you click Stream.")
|
171 |
+
gr.DuplicateButton()
|
|
|
|
|
172 |
|
173 |
+
with gr.Blocks() as app:
|
174 |
+
with gr.Row():
|
175 |
+
with gr.Column():
|
176 |
+
text = gr.Textbox(label="Input Text", info="Arbitrarily many characters supported")
|
177 |
+
with gr.Row():
|
178 |
+
voice = gr.Dropdown(list(CHOICES.items()), value="af_bella.pt" if "af_bella.pt" in CHOICES.values() else list(CHOICES.values())[0], label="Voice",
|
179 |
+
info="Quality and availability vary by language")
|
180 |
+
use_gpu = gr.Dropdown(
|
181 |
+
[("GPU ๐", True), ("CPU ๐", False)],
|
182 |
+
value=CUDA_AVAILABLE,
|
183 |
+
label="Hardware",
|
184 |
+
info="GPU is usually faster, but may require CUDA support",
|
185 |
+
interactive=CUDA_AVAILABLE
|
186 |
+
)
|
187 |
+
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label="Speed")
|
188 |
+
with gr.Column():
|
189 |
+
gr.TabbedInterface([generate_tab, stream_tab], ["Generate", "Stream"])
|
190 |
+
generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu],
|
191 |
+
outputs=[out_audio, out_ps])
|
192 |
+
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps])
|
193 |
+
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu], outputs=[out_stream])
|
194 |
+
stop_btn.click(fn=None, cancels=[stream_event])
|
195 |
+
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio])
|