Spaces:
Running
on
Zero
Running
on
Zero
| import sys | |
| sys.path.append('./') | |
| import torch | |
| import random | |
| import spaces | |
| import gradio as gr | |
| from diffusers import AutoPipelineForText2Image | |
| from transformers import CLIPVisionModelWithProjection | |
| from diffusers.utils import load_image | |
| from torchvision import transforms | |
| device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
| dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
| pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float32).to('cuda:0') | |
| pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, 2000) | |
| return seed | |
| def create_image(image_pil, | |
| prompt, | |
| n_prompt, | |
| scale, | |
| control_scale, | |
| guidance_scale, | |
| num_inference_steps, | |
| seed, | |
| target="Load only style blocks", | |
| ): | |
| if target !="Load original IP-Adapter": | |
| if target=="Load only style blocks": | |
| scale = { | |
| "up": {"block_0": [0.0, control_scale, 0.0]}, | |
| } | |
| elif target=="Load only layout blocks": | |
| scale = { | |
| "down": {"block_2": [0.0, control_scale]}, | |
| } | |
| elif target == "Load style+layout block": | |
| scale = { | |
| "down": {"block_2": [0.0, control_scale]}, | |
| "up": {"block_0": [0.0, control_scale, 0.0]}, | |
| } | |
| pipeline.set_ip_adapter_scale(scale) | |
| style_image = load_image(image_pil) | |
| generator = torch.Generator(device='cuda:0').manual_seed(randomize_seed_fn(seed, True)) | |
| torch.cuda.set_device(device) | |
| image = pipeline( | |
| prompt=prompt, | |
| ip_adapter_image=style_image, | |
| negative_prompt=n_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| device='cuda:0' | |
| ) | |
| return image | |
| # Description | |
| title = r""" | |
| <h1 align="center">InstantStyle</h1> | |
| """ | |
| description = r""" | |
| How to use:<br> | |
| 1. Upload a style image. | |
| 2. Set stylization mode, only use style block by default. | |
| 2. Enter a text prompt, as done in normal text-to-image models. | |
| 3. Click the <b>Submit</b> button to begin customization. | |
| 4. Share your stylized photo with your friends and enjoy! π | |
| Advanced usage:<br> | |
| 1. Click advanced options. | |
| 2. Upload another source image for image-based stylization using ControlNet. | |
| 3. Enter negative content prompt to avoid content leakage. | |
| """ | |
| article = r""" | |
| --- | |
| ```bibtex | |
| @article{wang2024instantstyle, | |
| title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation}, | |
| author={Wang, Haofan and Wang, Qixun and Bai, Xu and Qin, Zekui and Chen, Anthony}, | |
| journal={arXiv preprint arXiv:2404.02733}, | |
| year={2024} | |
| } | |
| ``` | |
| """ | |
| block = gr.Blocks().queue(max_size=10, api_open=True) | |
| with block: | |
| # description | |
| gr.Markdown(title) | |
| gr.Markdown(description) | |
| with gr.Tabs(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_pil = gr.Image(label="Style Image", type="pil") | |
| target = gr.Radio(["Load only style blocks", "Load only layout blocks","Load style+layout block", "Load original IP-Adapter"], | |
| value="Load only style blocks", | |
| label="Style mode") | |
| prompt = gr.Textbox(label="Prompt", | |
| value="a cat, masterpiece, best quality, high quality") | |
| scale = gr.Slider(minimum=0,maximum=2.0, step=0.01,value=1.0, label="Scale") | |
| with gr.Accordion(open=False, label="Advanced Options"): | |
| control_scale = gr.Slider(minimum=0,maximum=1.0, step=0.01,value=0.5, label="Controlnet conditioning scale") | |
| n_prompt = gr.Textbox(label="Neg Prompt", value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry") | |
| guidance_scale = gr.Slider(minimum=1,maximum=15.0, step=0.01,value=5.0, label="guidance scale") | |
| num_inference_steps = gr.Slider(minimum=5,maximum=50.0, step=1.0,value=20, label="num inference steps") | |
| seed = gr.Slider(minimum=-1000000,maximum=1000000,value=1, step=1, label="Seed Value") | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| generate_button = gr.Button("Generate Image") | |
| with gr.Column(): | |
| generated_image = gr.Gallery(label="Generated Image") | |
| generate_button.click( | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=create_image, | |
| inputs=[image_pil, | |
| prompt, | |
| n_prompt, | |
| scale, | |
| control_scale, | |
| guidance_scale, | |
| num_inference_steps, | |
| seed, | |
| target], | |
| outputs=[generated_image]) | |
| gr.Markdown(article) | |
| block.launch(show_error=True) |