import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM from typing import List, Tuple model_name = "Hawoly18/Adia_Llama3.1" # Vérifier si un GPU est disponible device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def respond( message: str, history: List[Tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ) -> str: prompt = system_message for user_msg, assistant_msg in history: prompt += f"\nUser: {user_msg}\nAssistant: {assistant_msg}" prompt += f"\nUser: {message}\nAssistant:" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( **inputs, max_length=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, ) response = tokenizer.decode(outputs[0], skip_special_tokens=True).split("Assistant:")[-1].strip() return response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # Fixed syntax error gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], title="Chatbot Interface" ) if __name__ == "__main__": demo.launch()