File size: 9,341 Bytes
87d57d6
 
 
 
 
 
 
 
c1eb1f9
87d57d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1eb1f9
87d57d6
 
 
 
 
c1eb1f9
87d57d6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import subprocess

subprocess.run(
    "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True
)

from typing import Any, List

import gradio as gr
import requests
import spaces
import torch
from PIL import Image, ImageDraw
from transformers import AutoModelForImageTextToText, AutoProcessor
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize

from . import navigation

# --- Configuration ---
MODEL_ID = "Hcompany/Holo1-7B"

# --- Model and Processor Loading (Load once) ---
print(f"Loading model and processor for {MODEL_ID}...")
model = None
processor = None
model_loaded = False
load_error_message = ""

try:
    model = AutoModelForImageTextToText.from_pretrained(
        MODEL_ID, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", trust_remote_code=True
    ).to("cuda")
    processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
    model_loaded = True
    print("Model and processor loaded successfully.")
except Exception as e:
    load_error_message = (
        f"Error loading model/processor: {e}\n"
        "This might be due to network issues, an incorrect model ID, or missing dependencies (like flash_attention_2 if enabled by default in some config).\n"
        "Ensure you have a stable internet connection and the necessary libraries installed."
    )
    print(load_error_message)

# --- Helper functions from the model card (or adapted) ---


@spaces.GPU(duration=120)
def run_inference_localization(
    messages_for_template: List[dict[str, Any]], pil_image_for_processing: Image.Image
) -> str:
    model.to("cuda")
    torch.cuda.set_device(0)
    """
    Runs inference using the Holo1 model.
    - messages_for_template: The prompt structure, potentially including the PIL image object 
                             (which apply_chat_template converts to an image tag).
    - pil_image_for_processing: The actual PIL image to be processed into tensors.
    """
    # 1. Apply chat template to messages. This will create the text part of the prompt,
    #    including image tags if the image was part of `messages_for_template`.
    text_prompt = processor.apply_chat_template(messages_for_template, tokenize=False, add_generation_prompt=True)

    # 2. Process text and image together to get model inputs
    inputs = processor(
        text=[text_prompt],
        images=[pil_image_for_processing],  # Provide the actual image data here
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to(model.device)

    # 3. Generate response
    # Using do_sample=False for more deterministic output, as in the model card's structured output example
    generated_ids = model.generate(**inputs, max_new_tokens=128, do_sample=False)

    # 4. Trim input_ids from generated_ids to get only the generated part
    generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]

    # 5. Decode the generated tokens
    decoded_output = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )

    return decoded_output[0] if decoded_output else ""


# --- Gradio processing function ---
def navigate(input_pil_image: Image.Image, task: str) -> str:
    if not model_loaded or not processor or not model:
        return f"Model not loaded. Error: {load_error_message}", None
    if not input_pil_image:
        return "No image provided. Please upload an image.", None
    if not task or task.strip() == "":
        return "No task provided. Please type an task.", input_pil_image.copy().convert("RGB")

    # 1. Prepare image: Resize according to model's image processor's expected properties
    #    This ensures predicted coordinates match the (resized) image dimensions.
    image_proc_config = processor.image_processor
    try:
        resized_height, resized_width = smart_resize(
            input_pil_image.height,
            input_pil_image.width,
            factor=image_proc_config.patch_size * image_proc_config.merge_size,
            min_pixels=image_proc_config.min_pixels,
            max_pixels=image_proc_config.max_pixels,
        )
        # Using LANCZOS for resampling as it's generally good for downscaling.
        # The model card used `resample=None`, which might imply nearest or default.
        # For visual quality in the demo, LANCZOS is reasonable.
        resized_image = input_pil_image.resize(
            size=(resized_width, resized_height),
            resample=Image.Resampling.LANCZOS,  # type: ignore
        )
    except Exception as e:
        print(f"Error resizing image: {e}")
        return f"Error resizing image: {e}", input_pil_image.copy().convert("RGB")

    # 2. Create the prompt using the resized image (for correct image tagging context) and task
    prompt = navigation.get_navigation_prompt(task, resized_image, step=1)

    # 3. Run inference
    #    Pass `messages` (which includes the image object for template processing)
    #    and `resized_image` (for actual tensor conversion).
    try:
        navigation_str = run_inference_localization(prompt, resized_image)
    except Exception as e:
        print(f"Error during model inference: {e}")
        return f"Error during model inference: {e}", resized_image.copy().convert("RGB")

    return navigation_str
    # return navigation.NavigationStep(**json.loads(navigation_str))


# --- Load Example Data ---
example_image = None
example_task = "Book a hotel in Paris on August 3rd for 3 nights"
try:
    example_image_url = "https://huggingface.co/Hcompany/Holo1-7B/resolve/main/calendar_example.jpg"
    example_image = Image.open(requests.get(example_image_url, stream=True).raw)
except Exception as e:
    print(f"Could not load example image from URL: {e}")
    # Create a placeholder image if loading fails, so Gradio example still works
    try:
        example_image = Image.new("RGB", (200, 150), color="lightgray")
        draw = ImageDraw.Draw(example_image)
        draw.text((10, 10), "Example image\nfailed to load", fill="black")
    except:  # If PIL itself is an issue (unlikely here but good for robustness)
        pass


# --- Gradio Interface Definition ---
title = "Holo1-7B: Action VLM Navigation Demo"
description = """
This demo showcases **Holo1-7B**, an Action Vision-Language Model developed by HCompany, fine-tuned from Qwen/Qwen2.5-VL-7B-Instruct.
It's designed to interact with web interfaces like a human user. Here, we demonstrate its UI localization capability.

**How to use:**
1. Upload an image (e.g., a screenshot of a UI, like the calendar example).
2. Provide a textual task (e.g., "Book a hotel in Paris on August 3rd for 3 nights").
3. The model will predict the  navigation step.

The model processes a resized version of your input image. Coordinates are relative to this resized image.
"""
article = f"""
<p style='text-align: center'>
Model: <a href='https://huggingface.co/{MODEL_ID}' target='_blank'>{MODEL_ID}</a> by HCompany | 
Paper: <a href='https://cdn.prod.website-files.com/67e2dbd9acff0c50d4c8a80c/683ec8095b353e8b38317f80_h_tech_report_v1.pdf' target='_blank'>HCompany Tech Report</a> |
Blog: <a href='https://www.hcompany.ai/surfer-h' target='_blank'>Surfer-H Blog Post</a>
</p>
"""

if not model_loaded:
    with gr.Blocks() as demo:
        gr.Markdown(f"# <center>⚠️ Error: Model Failed to Load ⚠️</center>")
        gr.Markdown(f"<center>{load_error_message}</center>")
        gr.Markdown(
            "<center>Please check the console output for more details. Reloading the space might help if it's a temporary issue.</center>"
        )
else:
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
        # gr.Markdown(description)

        with gr.Row():
            with gr.Column(scale=1):
                input_image_component = gr.Image(type="pil", label="Input UI Image", height=400)
                task_component = gr.Textbox(
                    label="task",
                    placeholder="e.g., Click the 'Login' button",
                    info="Type the action you want the model to localize on the image.",
                )
                submit_button = gr.Button("Localize Click", variant="primary")

            with gr.Column(scale=1):
                output_coords_component = gr.Textbox(
                    label="Predicted Coordinates (Format: Click(x,y))", interactive=False
                )
                output_image_component = gr.Image(
                    type="pil", label="Image with Predicted Click Point", height=400, interactive=False
                )

        if example_image:
            gr.Examples(
                examples=[[example_image, example_task]],
                inputs=[input_image_component, task_component],
                outputs=[output_coords_component, output_image_component],
                fn=navigate,
                cache_examples="lazy",
            )

        gr.Markdown(article)

        submit_button.click(
            fn=navigate,
            inputs=[input_image_component, task_component],
            outputs=[output_coords_component, output_image_component],
        )

if __name__ == "__main__":
    demo.launch(debug=True)