File size: 15,523 Bytes
df3acad
 
 
 
 
 
 
 
 
eafde4f
 
df3acad
 
 
eafde4f
 
 
 
df3acad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf2703f
 
efc13cd
bf2703f
 
 
 
 
 
 
 
 
 
 
 
 
df3acad
 
 
 
 
 
 
 
 
 
 
 
 
 
bf2703f
 
 
 
 
 
 
 
 
 
 
 
df3acad
eafde4f
 
bf2703f
eafde4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf2703f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df3acad
bf2703f
 
 
 
df3acad
eafde4f
 
 
 
 
 
 
 
 
 
 
 
df3acad
bf2703f
 
 
 
 
 
 
 
df3acad
 
 
 
 
 
 
 
 
bf2703f
 
 
eafde4f
 
 
 
 
 
 
 
 
bf2703f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c60b80
bf2703f
 
 
 
 
 
 
 
 
 
 
 
 
0c60b80
bf2703f
 
df3acad
0c60b80
bf2703f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eafde4f
bf2703f
eafde4f
bf2703f
eafde4f
bf2703f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c60b80
bf2703f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import subprocess
import sys

# Install/upgrade required packages with specific versions
def install_packages():
    packages = [
        "transformers>=4.46.0",
        "diffusers>=0.31.0",
        "accelerate>=0.26.0",
        "huggingface-hub>=0.23.0",
        "timm",  # Required for Florence-2
    ]
    
    for package in packages:
        try:
            subprocess.run([sys.executable, "-m", "pip", "install", "--upgrade", package], check=True)
        except Exception as e:
            print(f"Warning: Could not install {package}: {e}")

# Run installation before other imports
try:
    install_packages()
except Exception as e:
    print(f"Warning: Could not auto-install packages: {e}")

# Try to install flash-attn with a timeout
try:
    print("Attempting to install flash-attn...")
    result = subprocess.run(
        'pip install flash-attn --no-build-isolation', 
        env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, 
        shell=True,
        timeout=120,  # 2 minute timeout
        capture_output=True,
        text=True
    )
    if result.returncode == 0:
        print("Flash-attn installed successfully")
    else:
        print(f"Flash-attn installation failed: {result.stderr}")
        print("Continuing without flash-attn...")
except subprocess.TimeoutExpired:
    print("Flash-attn installation timed out - continuing without it")
except Exception as e:
    print(f"Flash-attn installation error: {e}")
    print("Continuing without flash-attn...")

import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM

# Try to use efficient attention mechanisms
ATTN_METHOD = None
try:
    import xformers
    print("Using xformers for efficient attention")
    ATTN_METHOD = "xformers"
except ImportError:
    try:
        import flash_attn
        print("Using flash attention")
        ATTN_METHOD = "flash_attn"
    except ImportError:
        print("No efficient attention method available, using default")
        ATTN_METHOD = "default"

# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")

os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path

torch.backends.cuda.matmul.allow_tf32 = True

# Florence ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
print("Initializing Florence models...")
florence_models = {}
florence_processors = {}

try:
    # Try importing timm to verify it's available
    import timm
    print("timm library available")
except ImportError:
    print("Installing timm...")
    subprocess.run([sys.executable, "-m", "pip", "install", "timm"], check=True)
    import timm

# Initialize Florence models with error handling
model_names = ['gokaygokay/Florence-2-Flux-Large', 'gokaygokay/Florence-2-Flux']

for model_name in model_names:
    try:
        print(f"Loading {model_name}...")
        florence_models[model_name] = AutoModelForCausalLM.from_pretrained(
            model_name, 
            trust_remote_code=True
        ).eval()
        florence_processors[model_name] = AutoProcessor.from_pretrained(
            model_name, 
            trust_remote_code=True
        )
        print(f"Successfully loaded {model_name}")
    except Exception as e:
        print(f"Warning: Could not load {model_name}: {e}")
        # If the large model fails, we'll fall back to the smaller one
        if model_name == 'gokaygokay/Florence-2-Flux-Large' and len(florence_models) == 0:
            print("Attempting to load fallback model...")
            try:
                fallback_model = 'gokaygokay/Florence-2-Flux'
                florence_models[model_name] = AutoModelForCausalLM.from_pretrained(
                    fallback_model, 
                    trust_remote_code=True
                ).eval()
                florence_processors[model_name] = AutoProcessor.from_pretrained(
                    fallback_model, 
                    trust_remote_code=True
                )
                print(f"Using {fallback_model} as fallback")
            except Exception as e2:
                print(f"Error loading fallback model: {e2}")

if not florence_models:
    print("ERROR: No Florence models could be loaded. Caption generation will not work.")
else:
    print(f"Loaded {len(florence_models)} Florence model(s)")

def filter_prompt(prompt):
    inappropriate_keywords = [
    "sex"    
    ]
    
    prompt_lower = prompt.lower()
    
    for keyword in inappropriate_keywords:
        if keyword in prompt_lower:
            return False, "๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ์ด ํฌํ•จ๋œ ํ”„๋กฌํ”„ํŠธ์ž…๋‹ˆ๋‹ค."
            
    return True, prompt

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

# Model initialization
if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

print("Loading FLUX pipeline...")
pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", 
    torch_dtype=torch.bfloat16
)

# Configure attention mechanism
if ATTN_METHOD == "xformers":
    try:
        pipe.enable_xformers_memory_efficient_attention()
        print("Enabled xformers memory efficient attention")
    except Exception as e:
        print(f"Could not enable xformers: {e}")
elif ATTN_METHOD == "flash_attn":
    print("Flash attention available")
else:
    print("Using standard attention")

print("Loading LoRA weights...")
pipe.load_lora_weights(
    hf_hub_download(
        "ByteDance/Hyper-SD", 
        "Hyper-FLUX.1-dev-8steps-lora.safetensors"
    )
)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)

# Safety checker initialization
try:
    pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained(
        "CompVis/stable-diffusion-safety-checker"
    )
except Exception as e:
    print(f"Warning: Could not load safety checker: {e}")
    pipe.safety_checker = None

@spaces.GPU
def generate_caption(image, model_name='gokaygokay/Florence-2-Flux-Large'):
    if not florence_models:
        gr.Warning("Caption models are not loaded. Please refresh the page.")
        return "Caption generation unavailable - please describe your image manually"
    
    # Use fallback model if the requested one isn't available
    if model_name not in florence_models:
        model_name = list(florence_models.keys())[0]
        print(f"Using fallback model: {model_name}")
    
    image = Image.fromarray(image)
    task_prompt = "<DESCRIPTION>"
    prompt = task_prompt + "Describe this image in great detail."

    if image.mode != "RGB":
        image = image.convert("RGB")

    model = florence_models[model_name]
    processor = florence_processors[model_name]

    inputs = processor(text=prompt, images=image, return_tensors="pt")
    generated_ids = model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        num_beams=3,
        repetition_penalty=1.10,
    )
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
    return parsed_answer["<DESCRIPTION>"]

@spaces.GPU
def process_and_save_image(height, width, steps, scales, prompt, seed):
    is_safe, filtered_prompt = filter_prompt(prompt)
    if not is_safe:
        gr.Warning("The prompt contains inappropriate content.")
        return None
            
    with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
        try:
            generated_image = pipe(
                prompt=[filtered_prompt],
                generator=torch.Generator().manual_seed(int(seed)),
                num_inference_steps=int(steps),
                guidance_scale=float(scales),
                height=int(height),
                width=int(width),
                max_sequence_length=256
            ).images[0]
            
            return generated_image
        except Exception as e:
            print(f"Error in image generation: {str(e)}")
            gr.Warning(f"Error generating image: {str(e)}")
            return None

def get_random_seed():
    return torch.randint(0, 1000000, (1,)).item()

def update_seed():
    return get_random_seed()

# CSS ์Šคํƒ€์ผ
css = """
footer {display: none !important}
.gradio-container {
    max-width: 1200px;
    margin: auto;
}
.contain {
    background: rgba(255, 255, 255, 0.05);
    border-radius: 12px;
    padding: 20px;
}
.generate-btn {
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
    border: none !important;
    color: white !important;
}
.generate-btn:hover {
    transform: translateY(-2px);
    box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.title {
    text-align: center;
    font-size: 2.5em;
    font-weight: bold;
    margin-bottom: 1em;
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
}
.tabs {
    margin-top: 20px;
    border-radius: 10px;
    overflow: hidden;
}
.tab-nav {
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
    padding: 10px;
}
.tab-nav button {
    color: white;
    border: none;
    padding: 10px 20px;
    margin: 0 5px;
    border-radius: 5px;
    transition: all 0.3s ease;
}
.tab-nav button.selected {
    background: rgba(255, 255, 255, 0.2);
}
.image-upload-container {
    border: 2px dashed #4B79A1;
    border-radius: 10px;
    padding: 20px;
    text-align: center;
    transition: all 0.3s ease;
}
.image-upload-container:hover {
    border-color: #283E51;
    background: rgba(75, 121, 161, 0.1);
}
.primary-btn {
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
    font-size: 1.2em !important;
    padding: 12px 20px !important;
    margin-top: 20px !important;
}
hr {
    border: none;
    border-top: 1px solid rgba(75, 121, 161, 0.2);
    margin: 20px 0;
}
.input-section {
    background: rgba(255, 255, 255, 0.03);
    border-radius: 12px;
    padding: 20px;
    margin-bottom: 20px;
}
.output-section {
    background: rgba(255, 255, 255, 0.03);
    border-radius: 12px;
    padding: 20px;
}
.example-images {
    display: grid;
    grid-template-columns: repeat(4, 1fr);
    gap: 10px;
    margin-bottom: 20px;
}
.example-images img {
    width: 100%;
    height: 150px;
    object-fit: cover;
    border-radius: 8px;
    cursor: pointer;
    transition: transform 0.2s;
}
.example-images img:hover {
    transform: scale(1.05);
}
"""

with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    gr.HTML('<div class="title">FLUX VisionReply</div>')
    gr.HTML('<div style="text-align: center; margin-bottom: 2em;">Upload an image(Image2Text2Image)</div>')
    
    with gr.Row():
        # ์™ผ์ชฝ ์ปฌ๋Ÿผ: ์ž…๋ ฅ ์„น์…˜
        with gr.Column(scale=3):
            # ์ด๋ฏธ์ง€ ์—…๋กœ๋“œ ์„น์…˜
            input_image = gr.Image(
                label="Upload Image (Optional)",
                type="numpy",
                elem_classes=["image-upload-container"]
            )
            
            # ์˜ˆ์‹œ ์ด๋ฏธ์ง€ ๊ฐค๋Ÿฌ๋ฆฌ ์ถ”๊ฐ€
            example_images = [
                "5.jpg",
                "6.jpg",
                "2.jpg",   
                "3.jpg",                
                "1.jpg",
                "4.jpg",
            ]
            gr.Examples(
                examples=example_images,
                inputs=input_image,
                label="Example Images",
                examples_per_page=4
            )
            
            # Florence ๋ชจ๋ธ ์„ ํƒ - ์ˆจ๊น€ ์ฒ˜๋ฆฌ
            available_models = list(florence_models.keys()) if florence_models else []
            florence_model = gr.Dropdown(
                choices=available_models,
                label="Caption Model",
                value=available_models[0] if available_models else None,
                visible=False
            )
            
            caption_button = gr.Button(
                "๐Ÿ” Generate Caption from Image",
                elem_classes=["generate-btn"]
            )
            
            # ๊ตฌ๋ถ„์„ 
            gr.HTML('<hr style="margin: 20px 0;">')
            
            # ํ…์ŠคํŠธ ํ”„๋กฌํ”„ํŠธ ์„น์…˜
            prompt = gr.Textbox(
                label="Image Description",
                placeholder="Enter text description or use generated caption above...",
                lines=3
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=1152,
                        step=64,
                        value=1024
                    )
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=1152,
                        step=64,
                        value=1024
                    )
                
                with gr.Row():
                    steps = gr.Slider(
                        label="Inference Steps",
                        minimum=6,
                        maximum=25,
                        step=1,
                        value=8
                    )
                    scales = gr.Slider(
                        label="Guidance Scale",
                        minimum=0.0,
                        maximum=5.0,
                        step=0.1,
                        value=3.5
                    )
                
                seed = gr.Number(
                    label="Seed",
                    value=get_random_seed(),
                    precision=0
                )
                
                randomize_seed = gr.Button(
                    "๐ŸŽฒ Randomize Seed", 
                    elem_classes=["generate-btn"]
                )
            
            generate_btn = gr.Button(
                "โœจ Generate Image",
                elem_classes=["generate-btn", "primary-btn"]
            )

        # ์˜ค๋ฅธ์ชฝ ์ปฌ๋Ÿผ: ์ถœ๋ ฅ ์„น์…˜
        with gr.Column(scale=4):
            output = gr.Image(
                label="Generated Image",
                elem_classes=["output-image"]
            )

    # Event handlers
    caption_button.click(
        generate_caption,
        inputs=[input_image, florence_model],
        outputs=[prompt]
    )
    
    generate_btn.click(
        process_and_save_image,
        inputs=[height, width, steps, scales, prompt, seed],
        outputs=[output]
    )
    
    randomize_seed.click(
        update_seed,
        outputs=[seed]
    )
    
    generate_btn.click(
        update_seed,
        outputs=[seed]
    )

if __name__ == "__main__":
    demo.launch(allowed_paths=[PERSISTENT_DIR])