Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import argparse | |
| import os | |
| import time | |
| from os import path | |
| import shutil | |
| from datetime import datetime | |
| from safetensors.torch import load_file | |
| from huggingface_hub import hf_hub_download | |
| import gradio as gr | |
| import torch | |
| from diffusers import FluxPipeline | |
| from diffusers.pipelines.stable_diffusion import safety_checker | |
| from PIL import Image | |
| from transformers import AutoProcessor, AutoModelForCausalLM | |
| import subprocess | |
| # Flash Attention 설치 | |
| subprocess.run('pip install flash-attn --no-build-isolation', | |
| env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, | |
| shell=True) | |
| # Setup and initialization code | |
| cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
| PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".") | |
| gallery_path = path.join(PERSISTENT_DIR, "gallery") | |
| os.environ["TRANSFORMERS_CACHE"] = cache_path | |
| os.environ["HF_HUB_CACHE"] = cache_path | |
| os.environ["HF_HOME"] = cache_path | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| # Create gallery directory | |
| if not path.exists(gallery_path): | |
| os.makedirs(gallery_path, exist_ok=True) | |
| # Florence 모델 초기화 | |
| florence_models = { | |
| 'gokaygokay/Florence-2-Flux-Large': AutoModelForCausalLM.from_pretrained( | |
| 'gokaygokay/Florence-2-Flux-Large', | |
| trust_remote_code=True | |
| ).eval(), | |
| 'gokaygokay/Florence-2-Flux': AutoModelForCausalLM.from_pretrained( | |
| 'gokaygokay/Florence-2-Flux', | |
| trust_remote_code=True | |
| ).eval(), | |
| } | |
| florence_processors = { | |
| 'gokaygokay/Florence-2-Flux-Large': AutoProcessor.from_pretrained( | |
| 'gokaygokay/Florence-2-Flux-Large', | |
| trust_remote_code=True | |
| ), | |
| 'gokaygokay/Florence-2-Flux': AutoProcessor.from_pretrained( | |
| 'gokaygokay/Florence-2-Flux', | |
| trust_remote_code=True | |
| ), | |
| } | |
| def filter_prompt(prompt): | |
| inappropriate_keywords = [ | |
| "nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx", | |
| "erotic", "sensual", "seductive", "provocative", "intimate", | |
| "violence", "gore", "blood", "death", "kill", "murder", "torture", | |
| "drug", "suicide", "abuse", "hate", "discrimination" | |
| ] | |
| prompt_lower = prompt.lower() | |
| for keyword in inappropriate_keywords: | |
| if keyword in prompt_lower: | |
| return False, "부적절한 내용이 포함된 프롬프트입니다." | |
| return True, prompt | |
| class timer: | |
| def __init__(self, method_name="timed process"): | |
| self.method = method_name | |
| def __enter__(self): | |
| self.start = time.time() | |
| print(f"{self.method} starts") | |
| def __exit__(self, exc_type, exc_val, exc_tb): | |
| end = time.time() | |
| print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
| # Model initialization | |
| if not path.exists(cache_path): | |
| os.makedirs(cache_path, exist_ok=True) | |
| pipe = FluxPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| torch_dtype=torch.bfloat16 | |
| ) | |
| pipe.load_lora_weights( | |
| hf_hub_download( | |
| "ByteDance/Hyper-SD", | |
| "Hyper-FLUX.1-dev-8steps-lora.safetensors" | |
| ) | |
| ) | |
| pipe.fuse_lora(lora_scale=0.125) | |
| pipe.to(device="cuda", dtype=torch.bfloat16) | |
| pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained( | |
| "CompVis/stable-diffusion-safety-checker" | |
| ) | |
| # CSS 스타일 | |
| css = """ | |
| footer {display: none !important} | |
| .gradio-container { | |
| max-width: 1200px; | |
| margin: auto; | |
| } | |
| .contain { | |
| background: rgba(255, 255, 255, 0.05); | |
| border-radius: 12px; | |
| padding: 20px; | |
| } | |
| .generate-btn { | |
| background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important; | |
| border: none !important; | |
| color: white !important; | |
| } | |
| .generate-btn:hover { | |
| transform: translateY(-2px); | |
| box-shadow: 0 5px 15px rgba(0,0,0,0.2); | |
| } | |
| .title { | |
| text-align: center; | |
| font-size: 2.5em; | |
| font-weight: bold; | |
| margin-bottom: 1em; | |
| background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%); | |
| -webkit-background-clip: text; | |
| -webkit-text-fill-color: transparent; | |
| } | |
| .tabs { | |
| margin-top: 20px; | |
| border-radius: 10px; | |
| overflow: hidden; | |
| } | |
| .tab-nav { | |
| background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%); | |
| padding: 10px; | |
| } | |
| .tab-nav button { | |
| color: white; | |
| border: none; | |
| padding: 10px 20px; | |
| margin: 0 5px; | |
| border-radius: 5px; | |
| transition: all 0.3s ease; | |
| } | |
| .tab-nav button.selected { | |
| background: rgba(255, 255, 255, 0.2); | |
| } | |
| .image-upload-container { | |
| border: 2px dashed #4B79A1; | |
| border-radius: 10px; | |
| padding: 20px; | |
| text-align: center; | |
| transition: all 0.3s ease; | |
| } | |
| .image-upload-container:hover { | |
| border-color: #283E51; | |
| background: rgba(75, 121, 161, 0.1); | |
| } | |
| """ | |
| # CSS에 추가할 스타일 | |
| additional_css = """ | |
| .primary-btn { | |
| background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important; | |
| font-size: 1.2em !important; | |
| padding: 12px 20px !important; | |
| margin-top: 20px !important; | |
| } | |
| hr { | |
| border: none; | |
| border-top: 1px solid rgba(75, 121, 161, 0.2); | |
| margin: 20px 0; | |
| } | |
| .input-section { | |
| background: rgba(255, 255, 255, 0.03); | |
| border-radius: 12px; | |
| padding: 20px; | |
| margin-bottom: 20px; | |
| } | |
| .output-section { | |
| background: rgba(255, 255, 255, 0.03); | |
| border-radius: 12px; | |
| padding: 20px; | |
| } | |
| """ | |
| # 기존 CSS에 새로운 스타일 추가 | |
| css = css + additional_css | |
| def save_image(image): | |
| """Save the generated image and return the path""" | |
| try: | |
| if not os.path.exists(gallery_path): | |
| try: | |
| os.makedirs(gallery_path, exist_ok=True) | |
| except Exception as e: | |
| print(f"Failed to create gallery directory: {str(e)}") | |
| return None | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| random_suffix = os.urandom(4).hex() | |
| filename = f"generated_{timestamp}_{random_suffix}.png" | |
| filepath = os.path.join(gallery_path, filename) | |
| try: | |
| if isinstance(image, Image.Image): | |
| image.save(filepath, "PNG", quality=100) | |
| else: | |
| image = Image.fromarray(image) | |
| image.save(filepath, "PNG", quality=100) | |
| if not os.path.exists(filepath): | |
| print(f"Warning: Failed to verify saved image at {filepath}") | |
| return None | |
| return filepath | |
| except Exception as e: | |
| print(f"Failed to save image: {str(e)}") | |
| return None | |
| except Exception as e: | |
| print(f"Error in save_image: {str(e)}") | |
| return None | |
| def load_gallery(): | |
| try: | |
| os.makedirs(gallery_path, exist_ok=True) | |
| image_files = [] | |
| for f in os.listdir(gallery_path): | |
| if f.lower().endswith(('.png', '.jpg', '.jpeg')): | |
| full_path = os.path.join(gallery_path, f) | |
| image_files.append((full_path, os.path.getmtime(full_path))) | |
| image_files.sort(key=lambda x: x[1], reverse=True) | |
| return [f[0] for f in image_files] | |
| except Exception as e: | |
| print(f"Error loading gallery: {str(e)}") | |
| return [] | |
| def generate_caption(image, model_name='gokaygokay/Florence-2-Flux-Large'): | |
| image = Image.fromarray(image) | |
| task_prompt = "<DESCRIPTION>" | |
| prompt = task_prompt + "Describe this image in great detail." | |
| if image.mode != "RGB": | |
| image = image.convert("RGB") | |
| model = florence_models[model_name] | |
| processor = florence_processors[model_name] | |
| inputs = processor(text=prompt, images=image, return_tensors="pt") | |
| generated_ids = model.generate( | |
| input_ids=inputs["input_ids"], | |
| pixel_values=inputs["pixel_values"], | |
| max_new_tokens=1024, | |
| num_beams=3, | |
| repetition_penalty=1.10, | |
| ) | |
| generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
| parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height)) | |
| return parsed_answer["<DESCRIPTION>"] | |
| def process_and_save_image(height, width, steps, scales, prompt, seed): | |
| is_safe, filtered_prompt = filter_prompt(prompt) | |
| if not is_safe: | |
| gr.Warning("The prompt contains inappropriate content.") | |
| return None, load_gallery() | |
| with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): | |
| try: | |
| generated_image = pipe( | |
| prompt=[filtered_prompt], | |
| generator=torch.Generator().manual_seed(int(seed)), | |
| num_inference_steps=int(steps), | |
| guidance_scale=float(scales), | |
| height=int(height), | |
| width=int(width), | |
| max_sequence_length=256 | |
| ).images[0] | |
| saved_path = save_image(generated_image) | |
| if saved_path is None: | |
| print("Warning: Failed to save generated image") | |
| return generated_image, load_gallery() | |
| except Exception as e: | |
| print(f"Error in image generation: {str(e)}") | |
| return None, load_gallery() | |
| def get_random_seed(): | |
| return torch.randint(0, 1000000, (1,)).item() | |
| def update_seed(): | |
| return get_random_seed() | |
| with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: | |
| gr.HTML('<div class="title">AI Image Generator & Caption</div>') | |
| gr.HTML('<div style="text-align: center; margin-bottom: 2em;">Upload an image for caption or create from text description</div>') | |
| with gr.Row(): | |
| # 왼쪽 컬럼: 입력 섹션 | |
| with gr.Column(scale=3): | |
| # 이미지 업로드 섹션 | |
| input_image = gr.Image( | |
| label="Upload Image (Optional)", | |
| type="numpy", | |
| elem_classes=["image-upload-container"] | |
| ) | |
| florence_model = gr.Dropdown( | |
| choices=list(florence_models.keys()), | |
| label="Caption Model", | |
| value='gokaygokay/Florence-2-Flux-Large', | |
| visible=True | |
| ) | |
| caption_button = gr.Button( | |
| "🔍 Generate Caption from Image", | |
| elem_classes=["generate-btn"] | |
| ) | |
| # 구분선 | |
| gr.HTML('<hr style="margin: 20px 0;">') | |
| # 텍스트 프롬프트 섹션 | |
| prompt = gr.Textbox( | |
| label="Image Description", | |
| placeholder="Enter text description or use generated caption above...", | |
| lines=3 | |
| ) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| with gr.Row(): | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=1152, | |
| step=64, | |
| value=1024 | |
| ) | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=1152, | |
| step=64, | |
| value=1024 | |
| ) | |
| with gr.Row(): | |
| steps = gr.Slider( | |
| label="Inference Steps", | |
| minimum=6, | |
| maximum=25, | |
| step=1, | |
| value=8 | |
| ) | |
| scales = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0.0, | |
| maximum=5.0, | |
| step=0.1, | |
| value=3.5 | |
| ) | |
| seed = gr.Number( | |
| label="Seed", | |
| value=get_random_seed(), | |
| precision=0 | |
| ) | |
| randomize_seed = gr.Button( | |
| "🎲 Randomize Seed", | |
| elem_classes=["generate-btn"] | |
| ) | |
| generate_btn = gr.Button( | |
| "✨ Generate Image", | |
| elem_classes=["generate-btn", "primary-btn"] | |
| ) | |
| # 오른쪽 컬럼: 출력 섹션 | |
| with gr.Column(scale=4): | |
| output = gr.Image( | |
| label="Generated Image", | |
| elem_classes=["output-image"] | |
| ) | |
| gallery = gr.Gallery( | |
| label="Generated Images Gallery", | |
| show_label=True, | |
| columns=[4], | |
| rows=[2], | |
| height="auto", | |
| object_fit="cover", | |
| elem_classes=["gallery-container"] | |
| ) | |
| gallery.value = load_gallery() | |
| # Event handlers | |
| caption_button.click( | |
| generate_caption, | |
| inputs=[input_image, florence_model], | |
| outputs=[prompt] | |
| ) | |
| generate_btn.click( | |
| process_and_save_image, | |
| inputs=[height, width, steps, scales, prompt, seed], | |
| outputs=[output, gallery] | |
| ) | |
| randomize_seed.click( | |
| update_seed, | |
| outputs=[seed] | |
| ) | |
| generate_btn.click( | |
| update_seed, | |
| outputs=[seed] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(allowed_paths=[PERSISTENT_DIR]) |