File size: 17,643 Bytes
af5108f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# app.py

import os
import sys
import time
import gradio as gr
import spaces
from huggingface_hub import snapshot_download
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError, RevisionNotFoundError
from pathlib import Path
import tempfile
from pydub import AudioSegment
import cv2
import numpy as np
from scipy import interpolate

# Add the src directory to the system path to allow for local imports
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), 'src')))

from models.inference.moda_test import LiveVASAPipeline, emo_map, set_seed

# --- Configuration ---
# Set seed for reproducibility
set_seed(42)

# Paths and constants for the Gradio demo
DEFAULT_CFG_PATH = "configs/audio2motion/inference/inference.yaml"
DEFAULT_MOTION_MEAN_STD_PATH = "src/datasets/mean.pt"
DEFAULT_SILENT_AUDIO_PATH = "src/examples/silent-audio.wav"
OUTPUT_DIR = "gradio_output"
WEIGHTS_DIR = "pretrain_weights"
REPO_ID = "lixinyizju/moda"

# --- Download Pre-trained Weights from Hugging Face Hub ---
def download_weights():
    """
    Downloads pre-trained weights from Hugging Face Hub if they don't exist locally.
    """
    # A simple check for a key file to see if the download is likely complete
    motion_model_file = os.path.join(WEIGHTS_DIR, "moda", "net-200.pth")
    
    if not os.path.exists(motion_model_file):
        print(f"Weights not found locally. Downloading from Hugging Face Hub repo '{REPO_ID}'...")
        print(f"This may take a while depending on your internet connection.")
        try:
            snapshot_download(
                repo_id=REPO_ID,
                local_dir=WEIGHTS_DIR,
                local_dir_use_symlinks=False,  # Use False to copy files directly; safer for Windows
                resume_download=True,
            )
            print("Weights downloaded successfully.")
        except GatedRepoError:
            raise gr.Error(f"Access to the repository '{REPO_ID}' is gated. Please visit https://huggingface.co/{REPO_ID} to request access.")
        except (RepositoryNotFoundError, RevisionNotFoundError):
            raise gr.Error(f"The repository '{REPO_ID}' was not found. Please check the repository ID.")
        except Exception as e:
            print(f"An error occurred during download: {e}")
            raise gr.Error(f"Failed to download models. Please check your internet connection and try again. Error: {e}")
    else:
        print(f"Found existing weights at '{WEIGHTS_DIR}'. Skipping download.")

# --- Audio Conversion Function ---
def ensure_wav_format(audio_path):
    """
    Ensures the audio file is in WAV format. If not, converts it to WAV.
    Returns the path to the WAV file (either original or converted).
    """
    if audio_path is None:
        return None
    
    audio_path = Path(audio_path)
    
    # Check if already WAV
    if audio_path.suffix.lower() == '.wav':
        print(f"Audio is already in WAV format: {audio_path}")
        return str(audio_path)
    
    # Convert to WAV
    print(f"Converting audio from {audio_path.suffix} to WAV format...")
    
    try:
        # Load the audio file
        audio = AudioSegment.from_file(audio_path)
        
        # Create a temporary WAV file
        with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
            wav_path = tmp_file.name
            # Export as WAV with higher sampling rate for better quality
            audio.export(
                wav_path,
                format='wav',
                parameters=["-ar", "24000", "-ac", "1"]  # 24kHz, mono for better lip-sync
            )
        
        print(f"Audio converted successfully to: {wav_path}")
        return wav_path
        
    except Exception as e:
        print(f"Error converting audio: {e}")
        raise gr.Error(f"Failed to convert audio file to WAV format. Error: {e}")

# --- Frame Interpolation Function ---
def interpolate_frames(video_path, target_fps=30):
    """
    Interpolates frames in a video to achieve smoother motion.
    
    Args:
        video_path: Path to the input video
        target_fps: Target frames per second
    
    Returns:
        Path to the interpolated video
    """
    try:
        video_path = str(video_path)
        cap = cv2.VideoCapture(video_path)
        
        # Get original video properties
        original_fps = cap.get(cv2.CAP_PROP_FPS)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        
        print(f"Original FPS: {original_fps}, Target FPS: {target_fps}")
        
        # If target FPS is not higher, return original
        if original_fps >= target_fps:
            cap.release()
            print("Target FPS is not higher than original. Skipping interpolation.")
            return video_path
        
        # Read all frames
        frames = []
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            frames.append(frame)
        cap.release()
        
        if len(frames) < 2:
            print("Not enough frames for interpolation.")
            return video_path
        
        # Calculate interpolation factor
        interpolation_factor = int(target_fps / original_fps)
        interpolated_frames = []
        
        print(f"Interpolating with factor: {interpolation_factor}")
        
        # Perform frame interpolation
        for i in range(len(frames) - 1):
            interpolated_frames.append(frames[i])
            
            # Generate intermediate frames
            for j in range(1, interpolation_factor):
                alpha = j / interpolation_factor
                # Use weighted average for simple interpolation
                interpolated_frame = cv2.addWeighted(
                    frames[i], 1 - alpha,
                    frames[i + 1], alpha,
                    0
                )
                interpolated_frames.append(interpolated_frame)
        
        # Add the last frame
        interpolated_frames.append(frames[-1])
        
        # Save the interpolated video
        output_path = video_path.replace('.mp4', '_interpolated.mp4')
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(output_path, fourcc, target_fps, (width, height))
        
        for frame in interpolated_frames:
            out.write(frame)
        out.release()
        
        print(f"Interpolated video saved to: {output_path}")
        return output_path
        
    except Exception as e:
        print(f"Error during frame interpolation: {e}")
        return video_path  # Return original if interpolation fails

# --- Initialization ---
# Create output directory if it doesn't exist
os.makedirs(OUTPUT_DIR, exist_ok=True)

# Download weights before initializing the pipeline
download_weights()

# Instantiate the pipeline once to avoid reloading models on every request
print("Initializing MoDA pipeline...")
try:
    pipeline = LiveVASAPipeline(
        cfg_path=DEFAULT_CFG_PATH,
        motion_mean_std_path=DEFAULT_MOTION_MEAN_STD_PATH
    )
    print("MoDA pipeline initialized successfully.")
except Exception as e:
    print(f"Error initializing pipeline: {e}")
    pipeline = None

# Invert the emo_map for easy lookup from the dropdown value
emo_name_to_id = {v: k for k, v in emo_map.items()}

# --- Core Generation Function ---
@spaces.GPU(duration=180)  # Increased duration for smoothing and interpolation
def generate_motion(source_image_path, driving_audio_path, emotion_name, 
                   cfg_scale, smooth_enabled, target_fps,
                   progress=gr.Progress(track_tqdm=True)):
    """
    The main function that takes Gradio inputs and generates the talking head video.
    
    Args:
        source_image_path: Path to the source image
        driving_audio_path: Path to the driving audio
        emotion_name: Selected emotion
        cfg_scale: CFG scale for generation
        smooth_enabled: Whether to enable smoothing
        target_fps: Target frames per second for interpolation
    """
    if pipeline is None:
        raise gr.Error("Pipeline failed to initialize. Check the console logs for details.")
        
    if source_image_path is None:
        raise gr.Error("Please upload a source image.")
    if driving_audio_path is None:
        raise gr.Error("Please upload a driving audio file.")

    start_time = time.time()
    
    # Ensure audio is in WAV format with optimal sampling rate
    wav_audio_path = ensure_wav_format(driving_audio_path)
    temp_wav_created = wav_audio_path != driving_audio_path
    
    # Create a unique subdirectory for this run
    timestamp = time.strftime("%Y%m%d-%H%M%S")
    run_output_dir = os.path.join(OUTPUT_DIR, timestamp)
    os.makedirs(run_output_dir, exist_ok=True)

    # Get emotion ID from its name
    emotion_id = emo_name_to_id.get(emotion_name, 8)  # Default to 'None' (ID 8) if not found

    print(f"Starting generation with the following parameters:")
    print(f"  Source Image: {source_image_path}")
    print(f"  Driving Audio (original): {driving_audio_path}")
    print(f"  Driving Audio (WAV): {wav_audio_path}")
    print(f"  Emotion: {emotion_name} (ID: {emotion_id})")
    print(f"  CFG Scale: {cfg_scale}")
    print(f"  Smoothing: {smooth_enabled}")
    print(f"  Target FPS: {target_fps}")

    try:
        # Temporarily disable smoothing if it causes CUDA tensor issues
        # Check if smooth causes issues and handle gracefully
        try:
            # Try with smoothing first
            result_video_path = pipeline.driven_sample(
                image_path=source_image_path,
                audio_path=wav_audio_path,
                cfg_scale=float(cfg_scale),
                emo=emotion_id,
                save_dir=".",
                smooth=smooth_enabled,  # Use the checkbox value
                silent_audio_path=DEFAULT_SILENT_AUDIO_PATH,
            )
        except TypeError as tensor_error:
            if "can't convert cuda" in str(tensor_error) and smooth_enabled:
                print("Warning: Smoothing caused CUDA tensor error. Retrying without smoothing...")
                # Retry without smoothing
                result_video_path = pipeline.driven_sample(
                    image_path=source_image_path,
                    audio_path=wav_audio_path,
                    cfg_scale=float(cfg_scale),
                    emo=emotion_id,
                    save_dir=".",
                    smooth=False,  # Disable smoothing as fallback
                    silent_audio_path=DEFAULT_SILENT_AUDIO_PATH,
                )
                print("Generated video without smoothing due to technical limitations.")
            else:
                raise tensor_error
        
        # Apply frame interpolation if requested
        if target_fps > 24:  # Assuming default is around 24 FPS
            print(f"Applying frame interpolation to achieve {target_fps} FPS...")
            result_video_path = interpolate_frames(result_video_path, target_fps=target_fps)
        
    except Exception as e:
        print(f"An error occurred during video generation: {e}")
        import traceback
        traceback.print_exc()
        raise gr.Error(f"An unexpected error occurred: {str(e)}. Please check the console for details.")
    finally:
        # Clean up temporary WAV file if created
        if temp_wav_created and os.path.exists(wav_audio_path):
            try:
                os.remove(wav_audio_path)
                print(f"Cleaned up temporary WAV file: {wav_audio_path}")
            except Exception as e:
                print(f"Warning: Could not delete temporary file {wav_audio_path}: {e}")

    end_time = time.time()
    processing_time = end_time - start_time
    
    result_video_path = Path(result_video_path)
    final_path = result_video_path.with_name(f"final_{result_video_path.stem}{result_video_path.suffix}")
    
    print(f"Video generated successfully at: {final_path}")
    print(f"Processing time: {processing_time:.2f} seconds.")

    return final_path

# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 960px !important; margin: 0 auto !important}") as demo:
    gr.HTML(
        """
        <div align='center'>
            <h1>MoDA: Multi-modal Diffusion Architecture for Talking Head Generation</h1>
            <h2 style="color: #4A90E2;">Enhanced Version with Smooth Motion</h2>
            <p style="display:flex; justify-content: center; gap: 10px;">
                <a href='https://lixinyyang.github.io/MoDA.github.io/'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
                <a href='https://arxiv.org/abs/2507.03256'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
                <a href='https://github.com/lixinyyang/MoDA/'><img src='https://img.shields.io/badge/Code-Github-green'></a>
            </p>
        </div>
        """
    )

    with gr.Row(variant="panel"):
        with gr.Column(scale=1):
            gr.Markdown("### 📥 Input Settings")
            
            with gr.Row():
                source_image = gr.Image(
                    label="Source Image", 
                    type="filepath", 
                    value="src/examples/reference_images/7.jpg"
                )
            
            with gr.Row():
                driving_audio = gr.Audio(
                    label="Driving Audio",
                    type="filepath",
                    value="src/examples/driving_audios/5.wav"
                )

            gr.Markdown("### ⚙️ Generation Settings")
            
            with gr.Row():
                emotion_dropdown = gr.Dropdown(
                    label="Emotion",
                    choices=list(emo_map.values()),
                    value="Neutral",
                    info="Select an emotion for more natural facial expressions"
                )

            with gr.Row():
                cfg_slider = gr.Slider(
                    label="CFG Scale (Lower = Smoother motion)",
                    minimum=0.5,
                    maximum=5.0,
                    step=0.1,
                    value=0.5,
                    info="Lower values produce smoother but less controlled motion"
                )
            
            gr.Markdown("### 🎬 Motion Enhancement")
            
            with gr.Row():
                smooth_checkbox = gr.Checkbox(
                    label="Enable Smoothing (Experimental)",
                    value=True,  # Changed to False due to CUDA issues
                    info="May cause errors on some systems. If errors occur, disable this option."
                )
            
            with gr.Row():
                fps_slider = gr.Slider(
                    label="Target FPS",
                    minimum=24,
                    maximum=60,
                    step=6,
                    value=60,
                    info="Higher FPS for smoother motion (uses frame interpolation)"
                )
            
            submit_button = gr.Button("🎥 Generate Video", variant="primary", size="lg")

        with gr.Column(scale=1):
            gr.Markdown("### 📺 Output")
            output_video = gr.Video(label="Generated Video")
            
            # Processing status
            with gr.Row():
                gr.Markdown(
                    """
                    <div style="background-color: #f0f8ff; padding: 10px; border-radius: 5px; margin-top: 10px;">
                        <p style="margin: 0; font-size: 0.9em;">
                        <b>Tips for best results:</b><br>
                        • Use high-quality front-facing images<br>
                        • Clear audio without background noise<br>
                        • Enable smoothing for natural motion<br>
                        • Adjust CFG scale if motion seems stiff
                        </p>
                    </div>
                    """
                )

    gr.Markdown(
        """
        ---
        ### ⚠️ **Disclaimer**
        This project is intended for academic research, and we explicitly disclaim any responsibility for user-generated content. 
        Users are solely liable for their actions while using this generative model.
        
        ### 🚀 **Enhancement Features**
        - **Frame Smoothing**: Reduces jitter and improves transition between frames
        - **Frame Interpolation**: Increases FPS for smoother motion
        - **Optimized Audio Processing**: Better lip-sync with 24kHz sampling
        - **Fine-tuned CFG Scale**: Better control over motion naturalness
        """
    )
    
    # Examples section
    gr.Examples(
        examples=[
            ["src/examples/reference_images/7.jpg", "src/examples/driving_audios/5.wav", "None", 1.0, False, 30],
            ["src/examples/reference_images/7.jpg", "src/examples/driving_audios/5.wav", "Happy", 0.8, False, 30],
            ["src/examples/reference_images/7.jpg", "src/examples/driving_audios/5.wav", "Sad", 1.2, False, 24],
        ],
        inputs=[source_image, driving_audio, emotion_dropdown, cfg_slider, smooth_checkbox, fps_slider],
        outputs=output_video,
        fn=generate_motion,
        cache_examples=False,
        label="Example Configurations"
    )
    
    submit_button.click(
        fn=generate_motion,
        inputs=[source_image, driving_audio, emotion_dropdown, cfg_slider, smooth_checkbox, fps_slider],
        outputs=output_video
    )

if __name__ == "__main__":
    demo.launch(share=True)