File size: 20,835 Bytes
b040570 a5bbb73 b040570 220c7ea 3e242b8 b040570 220c7ea 3e242b8 220c7ea 3e242b8 220c7ea b040570 3e242b8 df2ef41 3e242b8 0e418ae 3e242b8 0e418ae 3e242b8 0e418ae 3e242b8 0e418ae 3e242b8 0e418ae 3e242b8 0e418ae 3e242b8 0e418ae 3e242b8 b040570 df2ef41 b040570 3e242b8 b040570 3e242b8 b040570 df2ef41 b040570 3e242b8 220c7ea b040570 220c7ea b040570 3e242b8 b040570 ee684a6 3e242b8 b040570 220c7ea b040570 f1a281a b040570 3e242b8 b040570 3e242b8 b040570 3e242b8 b040570 220c7ea df2ef41 220c7ea b040570 3e242b8 b040570 df2ef41 3e242b8 b040570 3e242b8 c94b781 3e242b8 ee684a6 df2ef41 ee684a6 b040570 3e242b8 0e418ae c94b781 0e418ae 3e242b8 b040570 3e242b8 b040570 3e242b8 df2ef41 3e242b8 b040570 3e242b8 df2ef41 3e242b8 df2ef41 b040570 3e242b8 ee684a6 3e242b8 b040570 3e242b8 b040570 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
# app.py
import os
import sys
import time
import gradio as gr
import spaces
from huggingface_hub import snapshot_download
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError, RevisionNotFoundError
from pathlib import Path
import tempfile
from pydub import AudioSegment
import cv2
import numpy as np
from scipy import interpolate
# Add the src directory to the system path to allow for local imports
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), 'src')))
from models.inference.moda_test import LiveVASAPipeline, emo_map, set_seed
# --- Configuration ---
# Set seed for reproducibility
set_seed(42)
# Paths and constants for the Gradio demo
DEFAULT_CFG_PATH = "configs/audio2motion/inference/inference.yaml"
DEFAULT_MOTION_MEAN_STD_PATH = "src/datasets/mean.pt"
DEFAULT_SILENT_AUDIO_PATH = "src/examples/silent-audio.wav"
OUTPUT_DIR = "gradio_output"
WEIGHTS_DIR = "pretrain_weights"
REPO_ID = "lixinyizju/moda"
# --- Download Pre-trained Weights from Hugging Face Hub ---
def download_weights():
"""
Downloads pre-trained weights from Hugging Face Hub if they don't exist locally.
"""
# A simple check for a key file to see if the download is likely complete
motion_model_file = os.path.join(WEIGHTS_DIR, "moda", "net-200.pth")
if not os.path.exists(motion_model_file):
print(f"Weights not found locally. Downloading from Hugging Face Hub repo '{REPO_ID}'...")
print(f"This may take a while depending on your internet connection.")
try:
snapshot_download(
repo_id=REPO_ID,
local_dir=WEIGHTS_DIR,
local_dir_use_symlinks=False, # Use False to copy files directly; safer for Windows
resume_download=True,
)
print("Weights downloaded successfully.")
except GatedRepoError:
raise gr.Error(f"Access to the repository '{REPO_ID}' is gated. Please visit https://huggingface.co/{REPO_ID} to request access.")
except (RepositoryNotFoundError, RevisionNotFoundError):
raise gr.Error(f"The repository '{REPO_ID}' was not found. Please check the repository ID.")
except Exception as e:
print(f"An error occurred during download: {e}")
raise gr.Error(f"Failed to download models. Please check your internet connection and try again. Error: {e}")
else:
print(f"Found existing weights at '{WEIGHTS_DIR}'. Skipping download.")
# --- Audio Conversion Function ---
def ensure_wav_format(audio_path):
"""
Ensures the audio file is in WAV format. If not, converts it to WAV.
Returns the path to the WAV file (either original or converted).
"""
if audio_path is None:
return None
audio_path = Path(audio_path)
# Check if already WAV
if audio_path.suffix.lower() == '.wav':
print(f"Audio is already in WAV format: {audio_path}")
return str(audio_path)
# Convert to WAV
print(f"Converting audio from {audio_path.suffix} to WAV format...")
try:
# Load the audio file
audio = AudioSegment.from_file(audio_path)
# Create a temporary WAV file
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
wav_path = tmp_file.name
# Export as WAV with higher sampling rate for better quality
audio.export(
wav_path,
format='wav',
parameters=["-ar", "24000", "-ac", "1"] # 24kHz, mono for better lip-sync
)
print(f"Audio converted successfully to: {wav_path}")
return wav_path
except Exception as e:
print(f"Error converting audio: {e}")
raise gr.Error(f"Failed to convert audio file to WAV format. Error: {e}")
# --- Frame Interpolation Function ---
def interpolate_frames(video_path, target_fps=30):
"""
Interpolates frames in a video to achieve smoother motion.
Args:
video_path: Path to the input video
target_fps: Target frames per second
Returns:
Path to the interpolated video
"""
try:
video_path = str(video_path)
cap = cv2.VideoCapture(video_path)
# Get original video properties
original_fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Fix for FPS detection issue
if original_fps == 0 or original_fps is None:
print("Warning: Could not detect original FPS. Assuming 25 FPS.")
original_fps = 25.0
print(f"Original FPS: {original_fps}, Target FPS: {target_fps}")
# If target FPS is not higher, return original
if original_fps >= target_fps:
cap.release()
print("Target FPS is not higher than original. Skipping interpolation.")
return video_path
# Read all frames
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
cap.release()
if len(frames) < 2:
print("Not enough frames for interpolation.")
return video_path
# Calculate interpolation factor (can be fractional)
interpolation_factor = target_fps / original_fps
# For fractional factors, we need different approach
if interpolation_factor <= 1:
print("Interpolation factor too low. Skipping.")
return video_path
print(f"Interpolating with factor: {interpolation_factor:.2f}")
print(f"Total frames to process: {len(frames)}")
# Perform frame interpolation
interpolated_frames = []
if interpolation_factor == int(interpolation_factor):
# Integer factor - simple interpolation
factor = int(interpolation_factor)
for i in range(len(frames) - 1):
interpolated_frames.append(frames[i])
# Generate intermediate frames
for j in range(1, factor):
alpha = j / factor
interpolated_frame = cv2.addWeighted(
frames[i], 1 - alpha,
frames[i + 1], alpha,
0
)
interpolated_frames.append(interpolated_frame)
interpolated_frames.append(frames[-1])
else:
# Fractional factor - use different approach
# For 25 -> 60 fps, we need to add selective frames
for i in range(len(frames) - 1):
interpolated_frames.append(frames[i])
# Add intermediate frame for smoother motion
if i % 2 == 0: # Add extra frame every other original frame
alpha = 0.4 # Blend ratio
interpolated_frame = cv2.addWeighted(
frames[i], 1 - alpha,
frames[i + 1], alpha,
0
)
interpolated_frames.append(interpolated_frame)
interpolated_frames.append(frames[-1])
print(f"Total interpolated frames: {len(interpolated_frames)}")
# Save the interpolated video
output_path = video_path.replace('.mp4', '_interpolated.mp4')
# Use H.264 codec for better compatibility
fourcc = cv2.VideoWriter_fourcc(*'H264')
out = cv2.VideoWriter(output_path, fourcc, target_fps, (width, height))
if not out.isOpened():
# Fallback to mp4v if H264 not available
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, target_fps, (width, height))
for frame in interpolated_frames:
out.write(frame)
out.release()
print(f"Interpolated video saved to: {output_path}")
return output_path
except Exception as e:
print(f"Error during frame interpolation: {e}")
import traceback
traceback.print_exc()
return video_path # Return original if interpolation fails
# --- Initialization ---
# Create output directory if it doesn't exist
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Download weights before initializing the pipeline
download_weights()
# Instantiate the pipeline once to avoid reloading models on every request
print("Initializing MoDA pipeline...")
try:
pipeline = LiveVASAPipeline(
cfg_path=DEFAULT_CFG_PATH,
motion_mean_std_path=DEFAULT_MOTION_MEAN_STD_PATH
)
print("MoDA pipeline initialized successfully.")
except Exception as e:
print(f"Error initializing pipeline: {e}")
pipeline = None
# Invert the emo_map for easy lookup from the dropdown value
emo_name_to_id = {v: k for k, v in emo_map.items()}
# --- Audio Length Check Function ---
def check_audio_length(audio_path):
"""
Check the length of an audio file and warn if it's too long.
Args:
audio_path: Path to the audio file
Returns:
Duration in seconds
"""
try:
audio = AudioSegment.from_file(audio_path)
duration_seconds = len(audio) / 1000.0
return duration_seconds
except Exception as e:
print(f"Error checking audio length: {e}")
return None
# --- Core Generation Function ---
@spaces.GPU(duration=180) # Increased duration for smoothing and interpolation
def generate_motion(source_image_path, driving_audio_path, emotion_name,
cfg_scale, smooth_enabled, target_fps,
progress=gr.Progress(track_tqdm=True)):
"""
The main function that takes Gradio inputs and generates the talking head video.
Args:
source_image_path: Path to the source image
driving_audio_path: Path to the driving audio
emotion_name: Selected emotion
cfg_scale: CFG scale for generation
smooth_enabled: Whether to enable smoothing
target_fps: Target frames per second for interpolation
"""
if pipeline is None:
raise gr.Error("Pipeline failed to initialize. Check the console logs for details.")
if source_image_path is None:
raise gr.Error("Please upload a source image.")
if driving_audio_path is None:
raise gr.Error("Please upload a driving audio file.")
# Check audio length
audio_duration = check_audio_length(driving_audio_path)
if audio_duration:
print(f"Audio duration: {audio_duration:.1f} seconds")
if audio_duration > 60:
gr.Warning(f"⚠️ Audio is {audio_duration:.1f} seconds long. MoDA works best with audio under 60 seconds. Processing may be slow and quality may degrade.")
if audio_duration > 180:
raise gr.Error("Audio is too long. Please use audio files under 3 minutes (180 seconds) for best results.")
start_time = time.time()
# Ensure audio is in WAV format with optimal sampling rate
wav_audio_path = ensure_wav_format(driving_audio_path)
temp_wav_created = wav_audio_path != driving_audio_path
# Create a unique subdirectory for this run
timestamp = time.strftime("%Y%m%d-%H%M%S")
run_output_dir = os.path.join(OUTPUT_DIR, timestamp)
os.makedirs(run_output_dir, exist_ok=True)
# Get emotion ID from its name
emotion_id = emo_name_to_id.get(emotion_name, 8) # Default to 'None' (ID 8) if not found
print(f"Starting generation with the following parameters:")
print(f" Source Image: {source_image_path}")
print(f" Driving Audio (original): {driving_audio_path}")
print(f" Driving Audio (WAV): {wav_audio_path}")
print(f" Emotion: {emotion_name} (ID: {emotion_id})")
print(f" CFG Scale: {cfg_scale}")
print(f" Smoothing: {smooth_enabled}")
print(f" Target FPS: {target_fps}")
try:
# Temporarily disable smoothing if it causes CUDA tensor issues
# Check if smooth causes issues and handle gracefully
try:
# Try with smoothing first
result_video_path = pipeline.driven_sample(
image_path=source_image_path,
audio_path=wav_audio_path,
cfg_scale=float(cfg_scale),
emo=emotion_id,
save_dir=".",
smooth=smooth_enabled, # Use the checkbox value
silent_audio_path=DEFAULT_SILENT_AUDIO_PATH,
)
except TypeError as tensor_error:
if "can't convert cuda" in str(tensor_error) and smooth_enabled:
print("Warning: Smoothing caused CUDA tensor error. Retrying without smoothing...")
# Retry without smoothing
result_video_path = pipeline.driven_sample(
image_path=source_image_path,
audio_path=wav_audio_path,
cfg_scale=float(cfg_scale),
emo=emotion_id,
save_dir=".",
smooth=False, # Disable smoothing as fallback
silent_audio_path=DEFAULT_SILENT_AUDIO_PATH,
)
print("Generated video without smoothing due to technical limitations.")
else:
raise tensor_error
# Apply frame interpolation if requested
if target_fps > 24: # Assuming default is around 24 FPS
print(f"Applying frame interpolation to achieve {target_fps} FPS...")
result_video_path = interpolate_frames(result_video_path, target_fps=target_fps)
except Exception as e:
print(f"An error occurred during video generation: {e}")
import traceback
traceback.print_exc()
raise gr.Error(f"An unexpected error occurred: {str(e)}. Please check the console for details.")
finally:
# Clean up temporary WAV file if created
if temp_wav_created and os.path.exists(wav_audio_path):
try:
os.remove(wav_audio_path)
print(f"Cleaned up temporary WAV file: {wav_audio_path}")
except Exception as e:
print(f"Warning: Could not delete temporary file {wav_audio_path}: {e}")
end_time = time.time()
processing_time = end_time - start_time
result_video_path = Path(result_video_path)
final_path = result_video_path.with_name(f"final_{result_video_path.stem}{result_video_path.suffix}")
print(f"Video generated successfully at: {final_path}")
print(f"Processing time: {processing_time:.2f} seconds.")
return final_path
# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 960px !important; margin: 0 auto !important}") as demo:
gr.HTML(
"""
<div align='center'>
<h1>MoDA: Multi-modal Diffusion Architecture for Talking Head Generation</h1>
<h2 style="color: #4A90E2;">Enhanced Version with Smooth Motion</h2>
<p style="display:flex; justify-content: center; gap: 10px;">
<a href='https://lixinyyang.github.io/MoDA.github.io/'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
<a href='https://arxiv.org/abs/2507.03256'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
<a href='https://github.com/lixinyyang/MoDA/'><img src='https://img.shields.io/badge/Code-Github-green'></a>
</p>
</div>
"""
)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
gr.Markdown("### 📥 Input Settings")
with gr.Row():
source_image = gr.Image(
label="Source Image",
type="filepath",
value="src/examples/reference_images/7.jpg"
)
with gr.Row():
driving_audio = gr.Audio(
label="Driving Audio (Recommended: < 60 seconds)",
type="filepath",
value="src/examples/driving_audios/5.wav"
)
gr.Markdown("### ⚙️ Generation Settings")
with gr.Row():
emotion_dropdown = gr.Dropdown(
label="Emotion",
choices=list(emo_map.values()),
value="None",
info="Select an emotion for more natural facial expressions"
)
with gr.Row():
cfg_slider = gr.Slider(
label="CFG Scale (Lower = Smoother motion)",
minimum=0.5,
maximum=5.0,
step=0.1,
value=0.5,
info="Lower values produce smoother but less controlled motion"
)
gr.Markdown("### 🎬 Motion Enhancement")
with gr.Row():
smooth_checkbox = gr.Checkbox(
label="Enable Smoothing (Experimental)",
value=False, # Changed to False due to CUDA issues
info="May cause errors on some systems. If errors occur, disable this option."
)
with gr.Row():
fps_slider = gr.Slider(
label="Target FPS",
minimum=24,
maximum=50,
step=1,
value=50,
info="Higher FPS for smoother motion. 30 FPS recommended, 50 FPS maximum"
)
submit_button = gr.Button("🎥 Generate Video", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### 📺 Output")
output_video = gr.Video(label="Generated Video")
# Processing status
with gr.Row():
gr.Markdown(
"""
<div style="background-color: #f0f8ff; padding: 10px; border-radius: 5px; margin-top: 10px;">
<p style="margin: 0; font-size: 0.9em;">
<b>Tips for best results:</b><br>
• Use high-quality front-facing images<br>
• Clear audio without background noise<br>
• <b>Keep audio under 60 seconds</b><br>
• Adjust CFG scale if motion seems stiff<br>
• For longer audio, split into segments
</p>
</div>
"""
)
gr.Markdown(
"""
---
### ⚠️ **Disclaimer**
This project is intended for academic research, and we explicitly disclaim any responsibility for user-generated content.
Users are solely liable for their actions while using this generative model.
### 🚀 **Enhancement Features**
- **Frame Smoothing**: Reduces jitter and improves transition between frames (currently experimental)
- **Frame Interpolation**: Increases FPS for smoother motion
- **Optimized Audio Processing**: Better lip-sync with 24kHz sampling
- **Fine-tuned CFG Scale**: Better control over motion naturalness
### ⏱️ **Audio Length Limitations**
- **Optimal**: Under 30 seconds for best quality and speed
- **Recommended**: Under 60 seconds
- **Maximum**: 180 seconds (3 minutes) - very slow processing
- For longer content, consider splitting audio into segments
"""
)
# Examples section
gr.Examples(
examples=[
["src/examples/reference_images/7.jpg", "src/examples/driving_audios/5.wav", "None", 1.0, False, 30],
["src/examples/reference_images/7.jpg", "src/examples/driving_audios/5.wav", "Happy", 0.8, False, 30],
["src/examples/reference_images/7.jpg", "src/examples/driving_audios/5.wav", "Sad", 1.2, False, 24],
],
inputs=[source_image, driving_audio, emotion_dropdown, cfg_slider, smooth_checkbox, fps_slider],
outputs=output_video,
fn=generate_motion,
cache_examples=False,
label="Example Configurations"
)
submit_button.click(
fn=generate_motion,
inputs=[source_image, driving_audio, emotion_dropdown, cfg_slider, smooth_checkbox, fps_slider],
outputs=output_video
)
if __name__ == "__main__":
demo.launch(share=True) |