File size: 32,871 Bytes
7758cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
"""
Modules, Inculude:
    - Attention: Attention module used in transformers
    - MLP: MLP module used in transformers
    - PositionalEncoding: Positional encoding module used in transformers
    - ROPE: ROPE module used in transformers
"""
import os
import copy
import logging
import math
import numbers
from itertools import repeat
from collections import OrderedDict
import collections.abc
from functools import partial
from typing import Any, Callable, Dict, Optional, Set, Tuple, Type, Union, List, Final
try:
    from typing import Literal
except ImportError:
    from typing_extensions import Literal
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from einops import rearrange, repeat

from .posemb_layers import apply_rotary_emb
try:
    from apex.normalization.fused_layer_norm import fused_layer_norm_affine
    has_apex = True
except ImportError:
    has_apex = False

try:
    from apex.normalization.fused_layer_norm import fused_rms_norm_affine, fused_rms_norm
    has_apex_rmsnorm = True
except ImportError:
    has_apex_rmsnorm = False

has_torch_rms_norm = hasattr(F, 'rms_norm')

from .config import use_fused_attn

import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
# From PyTorch internals
def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
            return tuple(x)
        return tuple(repeat(x, n))
    return parse

to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple


def make_divisible(v, divisor=8, min_value=None, round_limit=.9):
    min_value = min_value or divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < round_limit * v:
        new_v += divisor
    return new_v


def extend_tuple(x, n):
    # pads a tuple to specified n by padding with last value
    if not isinstance(x, (tuple, list)):
        x = (x,)
    else:
        x = tuple(x)
    pad_n = n - len(x)
    if pad_n <= 0:
        return x[:n]
    return x + (x[-1],) * pad_n


# RMS_NORM
def get_autocast_dtype(device: str = 'cuda'):
    try:
        return torch.get_autocast_dtype(device)
    except (AttributeError, TypeError):
        # dispatch to older device specific fns, only covering cuda/cpu devices here
        if device == 'cpu':
            return torch.get_autocast_cpu_dtype()
        else:
            assert device == 'cuda'
            return torch.get_autocast_gpu_dtype()


def is_autocast_enabled(device: str = 'cuda'):
    try:
        return torch.is_autocast_enabled(device)
    except TypeError:
        # dispatch to older device specific fns, only covering cuda/cpu devices here
        if device == 'cpu':
            return torch.is_autocast_cpu_enabled()
        else:
            assert device == 'cuda'
            return torch.is_autocast_enabled()  # defaults cuda (only cuda on older pytorch)


_USE_FAST_NORM = False  # defaulting to False for now
def is_fast_norm():
    return _USE_FAST_NORM


def rms_norm(
    x: torch.Tensor,
    normalized_shape: List[int],
    weight: Optional[torch.Tensor] = None,
    eps: float = 1e-5,
):
    norm_ndim = len(normalized_shape)
    v = x.pow(2)
    if torch.jit.is_scripting():
        # ndim = len(x.shape)
        # dims = list(range(ndim - norm_ndim, ndim))  # this doesn't work on pytorch <= 1.13.x
        # NOTE -ve dims cause torchscript to crash in some cases, out of options to work around
        assert norm_ndim == 1
        v = torch.mean(v, dim=-1).unsqueeze(-1)  # ts crashes with -ve dim + keepdim=True
    else:
        dims = tuple(range(-1, -norm_ndim - 1, -1))
        v = torch.mean(v, dim=dims, keepdim=True)
    x = x * torch.rsqrt(v + eps)
    if weight is not None:
        x = x * weight
    return x


def fast_rms_norm(
    x: torch.Tensor,
    normalized_shape: List[int],
    weight: Optional[torch.Tensor] = None,
    eps: float = 1e-5,
) -> torch.Tensor:
    if torch.jit.is_scripting():
        # this must be by itself, cannot merge with has_apex_rmsnorm
        return rms_norm(x, normalized_shape, weight, eps)

    if has_apex_rmsnorm:
        if weight is None:
            return fused_rms_norm(x, normalized_shape, eps)
        else:
            return fused_rms_norm_affine(x, weight, normalized_shape, eps)

    if is_autocast_enabled(x.device.type):
        # normally native AMP casts LN inputs to float32
        # apex LN does not, this is behaving like Apex
        dt = get_autocast_dtype(x.device.type)
        x, weight = x.to(dt), weight.to(dt)

    with torch.autocast(device_type=x.device.type, enabled=False):
        if has_torch_rms_norm:
            x = F.rms_norm(x, normalized_shape, weight, eps)
        else:
            x = rms_norm(x, normalized_shape, weight, eps)

    return x


class RMSNorm(nn.Module):
    """ RMSNorm w/ fast (apex) norm if available
    """
    __constants__ = ['normalized_shape', 'eps', 'elementwise_affine', '_fast_norm']
    normalized_shape: Tuple[int, ...]
    eps: float
    elementwise_affine: bool
    _fast_norm: bool

    def __init__(self, channels, eps=1e-6, elementwise_affine=True, device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        normalized_shape = channels
        if isinstance(normalized_shape, numbers.Integral):
            # mypy error: incompatible types in assignment
            normalized_shape = (normalized_shape,)  # type: ignore[assignment]
        self.normalized_shape = tuple(normalized_shape)  # type: ignore[arg-type]
        self.eps = eps
        self.elementwise_affine = elementwise_affine
        self._fast_norm = is_fast_norm()  # can't script unless we have these flags here (no globals)

        if self.elementwise_affine:
            self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
        else:
            self.register_parameter('weight', None)

        self.reset_parameters()

    def reset_parameters(self) -> None:
        if self.elementwise_affine:
            nn.init.ones_(self.weight)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # NOTE fast norm fallback needs our rms norm impl, so both paths through here.
        # Since there is no built-in PyTorch impl, always use APEX RmsNorm if is installed.
        if self._fast_norm:
            x = fast_rms_norm(x, self.normalized_shape, self.weight, self.eps)
        else:
            x = rms_norm(x, self.normalized_shape, self.weight, self.eps)
        return x


class Mlp(nn.Module):
    """ MLP module used in transformers
    """
    def __init__(
            self,
            in_features,
            hidden_features=None,
            out_features=None,
            act_layer=nn.GELU,
            norm_layer=None,
            bias=True,
            drop=0.,
            use_conv=False,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        #bias = to_2tuple(bias)
        #drop_probs = to_2tuple(drop)
        bias = [bias, bias]
        drop_probs = [drop, drop]
        linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear

        self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
        self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
        self.drop2 = nn.Dropout(drop_probs[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.norm(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x
class MMsingle_attention(nn.Module):
    """
    Self-Attention module used in transformers
    """
    fused_attn: Final[bool]

    def __init__(
        self, dim: int, 
        num_heads: int = 8, 
        proj_bias: bool = True,
        attn_drop: float = 0., 
        proj_drop: float = 0.,
        qkv_bias: bool = False, 
        qk_norm: Optional[str] = "rms_norm", 
        **block_kwargs
    ) -> None:
        super().__init__()

        assert dim % num_heads == 0, f"dim {dim} should be divisible by num_heads {num_heads}"
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5
        self.fused_attn = use_fused_attn()
        self.attn_drop = nn.Dropout(attn_drop)
        if qk_norm is None:
            self.xs_q_norm = nn.Identity()
            self.xs_k_norm = nn.Identity()
        elif qk_norm == "rms_norm":
            self.xs_q_norm = RMSNorm(self.head_dim, eps=1e-5)
            self.xs_k_norm = RMSNorm(self.head_dim, eps=1e-5)
        elif qk_norm == "layer_norm":
            self.xs_q_norm = nn.LayerNorm(dim, eps=1e-5)
            self.xs_k_norm = nn.LayerNorm(dim, eps=1e-5)
        else:
            raise ValueError(f"Unsupported qk_norm method: {qk_norm}")

    def forward(self, txt_len,x: torch.Tensor, mask: Optional[torch.Tensor] = None,causal: bool = False,freqs_cis=None,freqs_cis2=None) -> torch.Tensor:
        B, N1, C = x.shape
        xs_qkv = x.reshape(B, N1, 3, -1)
        xs_q, xs_k, xs_v = xs_qkv.permute(2, 0, 1, 3).unbind(0)
        N2=N1//4
        q = xs_q.view(B, N1, self.num_heads, self.head_dim)
        k = xs_k.view(B, N1, self.num_heads, self.head_dim)
        v = xs_v.view(B, N1, self.num_heads, self.head_dim).transpose(1, 2)
        q, k = self.xs_q_norm(q), self.xs_k_norm(k)  
        if freqs_cis is not None or freqs_cis2 is not None:
            img_q, txt_q = q[:, :txt_len, :, :], q[:, txt_len:, :, :]
            img_k, txt_k = k[:, :txt_len, :, :], k[:, txt_len:, :, :]
            img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
            assert (
                img_qq.shape == img_q.shape and img_kk.shape == img_k.shape
            ), f"img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}"
            img_q, img_k = img_qq.transpose(1, 2), img_kk.transpose(1, 2)
            if freqs_cis2 is not None:
                txt_qq, txt_kk = apply_rotary_emb(txt_q, txt_k, freqs_cis2, head_first=False) 
                assert (
                    txt_qq.shape == txt_q.shape and txt_kk.shape == txt_k.shape
                ), f"img_kk: {txt_q.shape}, img_q: {txt_q.shape}, img_kk: {txt_kk.shape}, img_k: {txt_k.shape}"
                txt_q, txt_k = txt_qq, txt_kk
            q = torch.cat((img_q, txt_q.transpose(1, 2)), dim=2)
            k = torch.cat((img_k, txt_k.transpose(1, 2)), dim=2)
        if mask is not None:
            mask = mask[:, None, None, :].expand(-1, self.num_heads,N1, -1)  # (B, num_heads, N, N)
            mask = mask.to(dtype=q.dtype)
        if causal:
            mask2 = torch.ones((N2+3*N2,N2+3*N2), dtype=torch.bool, device=v.device)
            mask2[-N2-N2:, :N2]= 0
            mask2[-N2-N2:-N2,-N2:]=0
            mask2[-N2:,-N2-N2:-N2]=0
            mask = mask2.to(dtype=torch.bool)
        if self.fused_attn:
            x = F.scaled_dot_product_attention(
                q, k, v,
                attn_mask=mask,
                dropout_p=self.attn_drop.p if self.training else 0.,
            )
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            if mask is not None:
                attn = attn.masked_fill(mask, float("-inf"))
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = attn @ v

        x = x.transpose(1, 2).reshape(B, N1, -1)
        return x
class MMfour_attention(nn.Module):
    """
    Self-Attention module used in transformers
    """
    fused_attn: Final[bool]

    def __init__(
        self, dim: int, 
        num_heads: int = 8, 
        proj_bias: bool = True,
        attn_drop: float = 0., 
        proj_drop: float = 0.,
        qkv_bias: bool = False, 
        qk_norm: Optional[str] = "rms_norm", 
        **block_kwargs
    ) -> None:
        super().__init__()

        assert dim % num_heads == 0, f"dim {dim} should be divisible by num_heads {num_heads}"
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5
        self.fused_attn = use_fused_attn()

        self.qkv_xs = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.qkv_au1 = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.qkv_au2 = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.qkv_au3 = nn.Linear(dim, dim * 3, bias=qkv_bias)
        if qk_norm is None:
            self.xs_q_norm = nn.Identity()
            self.xs_k_norm = nn.Identity()
            self.au_q_norm = nn.Identity()
            self.au_k_norm = nn.Identity()
        elif qk_norm == "rms_norm":
            self.xs_q_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
            self.xs_k_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
            self.au_q_norm1 = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
            self.au_k_norm1 = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)

            self.au_q_norm2 = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
            self.au_k_norm2 = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)

            self.au_q_norm3 = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
            self.au_k_norm3= RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
        elif qk_norm == "layer_norm":
            self.xs_q_norm = nn.LayerNorm(dim, eps=1e-5)
            self.xs_k_norm = nn.LayerNorm(dim, eps=1e-5)
            self.au_q_norm = nn.LayerNorm(dim, eps=1e-5)
            self.au_k_norm = nn.LayerNorm(dim, eps=1e-5)
        else:
            raise ValueError(f"Unsupported qk_norm method: {qk_norm}")

        self.attn_drop = nn.Dropout(attn_drop)
        self.xs_proj = nn.Linear(dim, dim, bias=proj_bias)
        self.au_proj1 =  nn.Linear(dim, dim, bias=proj_bias)
        self.au_proj2 =  nn.Linear(dim, dim, bias=proj_bias)
        self.au_proj3 =  nn.Linear(dim, dim, bias=proj_bias)
        self.xs_proj_drop = nn.Dropout(proj_drop)
        self.au_proj_drop1 = nn.Dropout(proj_drop)
        self.au_proj_drop2 = nn.Dropout(proj_drop)
        self.au_proj_drop3 = nn.Dropout(proj_drop)
    def forward(self, x: torch.Tensor, y1: torch.Tensor, y2: torch.Tensor,y3: torch.Tensor,mask: Optional[torch.Tensor] = None,causal=False,freqs_cis=None,freqs_cis2=None) -> Tuple[torch.Tensor, torch.Tensor]:
        B, N1, C = x.shape
        xs_qkv = self.qkv_xs(x).reshape(B, N1, 3, -1)
        xs_q, xs_k, xs_v = xs_qkv.permute(2, 0, 1, 3).unbind(0)
        

        B,N2,C= y1.shape
        au_qkv1 = self.qkv_au1(y1).reshape(B, N2, 3, -1)
        au_q1, au_k1, au_v1 = au_qkv1.permute(2, 0, 1, 3).unbind(0)
        
        B,N3,C= y2.shape
        au_qkv2 = self.qkv_au2(y2).reshape(B, N3, 3, -1)
        au_q2, au_k2, au_v2 = au_qkv2.permute(2, 0, 1, 3).unbind(0)

        B,N4,C= y3.shape
        au_qkv3 = self.qkv_au3(y3).reshape(B, N4, 3, -1)
        au_q3, au_k3, au_v3 = au_qkv3.permute(2, 0, 1, 3).unbind(0)


        M=N2//N1        
        xs_q = xs_q.view(B, N1, self.num_heads, self.head_dim)
        xs_k = xs_k.view(B, N1, self.num_heads, self.head_dim)
        xs_v = xs_v.view(B, N1, self.num_heads, self.head_dim).transpose(1, 2)
        xs_q, xs_k = self.xs_q_norm(xs_q), self.xs_k_norm(xs_k)
        if freqs_cis is not None:
            img_qq, img_kk = apply_rotary_emb(xs_q, xs_k, freqs_cis, head_first=False)
            assert (
                img_qq.shape == xs_q.shape and img_kk.shape == xs_k.shape
            ), f"img_kk: {img_qq.shape}, img_q: {xs_q.shape}, img_kk: {img_kk.shape}, img_k: {xs_k.shape}"
            xs_q, xs_k = img_qq.transpose(1, 2), img_kk.transpose(1, 2)
        au_q1=au_q1.view(B, N2, self.num_heads, self.head_dim)
        au_k1=au_k1.view(B, N2, self.num_heads, self.head_dim)
        au_v1=au_v1.view(B, N2, self.num_heads, self.head_dim).transpose(1, 2)
        au_q1, au_k1 = self.au_q_norm1(au_q1), self.au_k_norm1(au_k1)

        au_q2=au_q2.view(B, N3, self.num_heads, self.head_dim)
        au_k2=au_k2.view(B, N3, self.num_heads, self.head_dim)
        au_v2=au_v2.view(B, N3, self.num_heads, self.head_dim).transpose(1, 2)
        au_q2, au_k2 = self.au_q_norm2(au_q2), self.au_k_norm2(au_k2)

        au_q3=au_q3.view(B, N4, self.num_heads, self.head_dim)
        au_k3=au_k3.view(B, N4, self.num_heads, self.head_dim)
        au_v3=au_v3.view(B, N4, self.num_heads, self.head_dim).transpose(1, 2)
        au_q3, au_k3 = self.au_q_norm3(au_q3), self.au_k_norm3(au_k3)

        if freqs_cis2 is not None:
            au_q11, au_k11 = apply_rotary_emb(au_q1, au_k1, freqs_cis2, head_first=False)
            au_q1, au_k1 = au_q11, au_k11
            assert (
                au_q11.shape == au_q1.shape and au_k11.shape == au_k1.shape
            ), f"au_q11: {au_q11.shape}, img_q: {au_q1.shape}, img_kk: {au_k11.shape}, img_k: {au_k1.shape}"



        q = torch.cat((xs_q, au_q1.transpose(1, 2),au_q2.transpose(1, 2),au_q3.transpose(1, 2)), dim=2)
        k = torch.cat((xs_k, au_k1.transpose(1, 2),au_k2.transpose(1, 2),au_k3.transpose(1, 2)), dim=2)
        v = torch.cat((xs_v, au_v1,au_v2,au_v3), dim=2)

        if mask is not None:
            # mask = mask[:, None, :]  # (B, 1, N)
            mask2 = mask[:, None, :].expand(-1, self.num_heads,-1)
            mask = mask[:, None, None, :].expand(-1, self.num_heads,M, -1) 
            mask = rearrange(mask, "b n m d -> b n (m d)")
            att_mask=torch.cat((mask2,mask),dim=-1)
            att_mask=att_mask[:,:,None,:].expand(-1, -1,N1+N2, -1) 
            mask = att_mask.to(dtype=q.dtype)
        if causal:
            mask2 = torch.ones((N1+3*N2,N1+3*N2), dtype=torch.bool, device=v.device)
            mask2[-N3-N4:, :N1] = 0
            mask2[-N1-N1:-N1,-N1:]=0
            mask2[-N1:,-N1-N1:-N1]=0
            mask = mask2.to(dtype=torch.bool)
        if self.fused_attn:
            # print("yesyes")
            x = F.scaled_dot_product_attention(
                q, k, v,
                attn_mask=mask,
                dropout_p=self.attn_drop.p if self.training else 0.,
            )
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            if mask is not None:
                attn = attn.masked_fill(mask, float("-inf"))
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = attn @ v

        x = x.transpose(1, 2).reshape(B, N1+N2+N3+N4, C)
        xs,au1,au2,au3=x[:,:N1],x[:,N1:N1+N2],x[:,N1+N2:N1+N2+N3],x[:,N1+N2+N3:N1+N2+N3+N4]
        xs = self.xs_proj(xs)
        xs = self.xs_proj_drop(xs)
        au1 = self.au_proj1(au1)
        au1 = self.au_proj_drop1(au1)

        au2 = self.au_proj2(au2)
        au2 = self.au_proj_drop2(au2)

        au3 = self.au_proj3(au3)
        au3 = self.au_proj_drop3(au3)
        return xs,au1,au2,au3
class MMdual_attention(nn.Module):
    """
    Self-Attention module used in transformers
    """
    fused_attn: Final[bool]

    def __init__(
        self, dim: int, 
        num_heads: int = 8, 
        proj_bias: bool = True,
        attn_drop: float = 0., 
        proj_drop: float = 0.,
        qkv_bias: bool = False, 
        qk_norm: Optional[str] = "rms_norm", 
        **block_kwargs
    ) -> None:
        super().__init__()

        assert dim % num_heads == 0, f"dim {dim} should be divisible by num_heads {num_heads}"
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5
        self.fused_attn = use_fused_attn()

        self.qkv_xs = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.qkv_au = nn.Linear(dim, dim * 3, bias=qkv_bias)
        if qk_norm is None:
            self.xs_q_norm = nn.Identity()
            self.xs_k_norm = nn.Identity()
            self.au_q_norm = nn.Identity()
            self.au_k_norm = nn.Identity()
        elif qk_norm == "rms_norm":
            self.xs_q_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
            self.xs_k_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
            self.au_q_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
            self.au_k_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
        elif qk_norm == "layer_norm":
            self.xs_q_norm = nn.LayerNorm(dim, eps=1e-5)
            self.xs_k_norm = nn.LayerNorm(dim, eps=1e-5)
            self.au_q_norm = nn.LayerNorm(dim, eps=1e-5)
            self.au_k_norm = nn.LayerNorm(dim, eps=1e-5)
        else:
            raise ValueError(f"Unsupported qk_norm method: {qk_norm}")

        self.attn_drop = nn.Dropout(attn_drop)
        self.xs_proj = nn.Linear(dim, dim, bias=proj_bias)
        self.au_proj =  nn.Linear(dim, dim, bias=proj_bias)
        self.xs_proj_drop = nn.Dropout(proj_drop)
        self.au_proj_drop = nn.Dropout(proj_drop)
    def forward(self, seq_len,x: torch.Tensor, y: torch.Tensor, mask: Optional[torch.Tensor] = None,causal=False,freqs_cis=None,freqs_cis2=None) -> Tuple[torch.Tensor, torch.Tensor]:
        B, N1, C = x.shape
        xs_qkv = self.qkv_xs(x).reshape(B, N1, 3, -1)
        xs_q, xs_k, xs_v = xs_qkv.permute(2, 0, 1, 3).unbind(0)
        

        B,N2,C= y.shape
        au_qkv = self.qkv_au(y).reshape(B, N2, 3, -1)
        au_q, au_k, au_v = au_qkv.permute(2, 0, 1, 3).unbind(0)    
        xs_q = xs_q.view(B, N1, self.num_heads, self.head_dim)
        xs_k = xs_k.view(B, N1, self.num_heads, self.head_dim)
        xs_v = xs_v.view(B, N1, self.num_heads, self.head_dim).transpose(1, 2)
        xs_q, xs_k = self.xs_q_norm(xs_q), self.xs_k_norm(xs_k)
        if freqs_cis is not None:
            img_qq, img_kk = apply_rotary_emb(xs_q, xs_k, freqs_cis, head_first=False)
            assert (
                img_qq.shape == xs_q.shape and img_kk.shape == xs_k.shape
            ), f"img_kk: {img_qq.shape}, img_q: {xs_q.shape}, img_kk: {img_kk.shape}, img_k: {xs_k.shape}"
            xs_q, xs_k = img_qq.transpose(1, 2), img_kk.transpose(1, 2)
        au_q=au_q.view(B, N2, self.num_heads, self.head_dim)
        au_k=au_k.view(B, N2, self.num_heads, self.head_dim)
        au_v=au_v.view(B, N2, self.num_heads, self.head_dim).transpose(1, 2)
        au_q, au_k = self.au_q_norm(au_q), self.au_k_norm(au_k)
        if freqs_cis2 is not None:
            img_qq, img_kk = apply_rotary_emb(au_q, au_k, freqs_cis2, head_first=False)
            assert (
                img_qq.shape == au_q.shape and img_kk.shape == au_k.shape
            ), f"img_kk: {img_qq.shape}, img_q: {xs_q.shape}, img_kk: {img_kk.shape}, img_k: {xs_k.shape}"
            au_q, au_k = img_qq, img_kk
        q = torch.cat((xs_q, au_q.transpose(1, 2)), dim=2)
        k = torch.cat((xs_k, au_k.transpose(1, 2)), dim=2)
        v = torch.cat((xs_v, au_v), dim=2)

        if mask is not None:
            # mask = mask[:, None, :]  # (B, 1, N)
            mask2 = mask[:, None, :].expand(-1, self.num_heads,-1)
            mask = mask[:, None, None, :].expand(-1, self.num_heads,M, -1) 
            mask = rearrange(mask, "b n m d -> b n (m d)")
            att_mask=torch.cat((mask2,mask),dim=-1)
            att_mask=att_mask[:,:,None,:].expand(-1, -1,N1+N2, -1) 
            mask = att_mask.to(dtype=q.dtype)
        if causal:
            mask2 = torch.ones((N1+3*N1,N1+3*N1), dtype=torch.bool, device=v.device)
            mask2[-N1-N1:, :N1] = 0
            mask2[-N1-N1:-N1,-N1:]=0
            mask2[-N1:,-N1-N1:-N1]=0

            mask = mask2.to(dtype=torch.bool)
        if self.fused_attn:
            x = F.scaled_dot_product_attention(
                q, k, v,
                attn_mask=mask,
                dropout_p=self.attn_drop.p if self.training else 0.,
            )
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            if mask is not None:
                attn = attn.masked_fill(mask, float("-inf"))
            attn = attn.softmax(dim=-1)
            



            attn = self.attn_drop(attn)
            x = attn @ v

        x = x.transpose(1, 2).reshape(B, N1+N2, C)
        xs,au=x[:,:N1],x[:,N1:]
        xs = self.xs_proj(xs)
        xs = self.xs_proj_drop(xs)
        au = self.au_proj(au)
        au = self.au_proj_drop(au)
        return xs,au

class SelfAttention(nn.Module):
    """
    Self-Attention module used in transformers
    """
    fused_attn: Final[bool]

    def __init__(
        self, dim: int, 
        num_heads: int = 8, 
        proj_bias: bool = True,
        attn_drop: float = 0., 
        proj_drop: float = 0.,
        qkv_bias: bool = False, 
        qk_norm: Optional[str] = "rms_norm", 
        **block_kwargs
    ) -> None:
        super().__init__()

        assert dim % num_heads == 0, f"dim {dim} should be divisible by num_heads {num_heads}"
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5
        self.fused_attn = use_fused_attn()

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        if qk_norm is None:
            self.q_norm = nn.Identity()
            self.k_norm = nn.Identity()
        elif qk_norm == "rms_norm":
            self.q_norm = RMSNorm(dim, eps=1e-5)
            self.k_norm = RMSNorm(dim, eps=1e-5)
        elif qk_norm == "layer_norm":
            self.q_norm = nn.LayerNorm(dim, eps=1e-5)
            self.k_norm = nn.LayerNorm(dim, eps=1e-5)
        else:
            raise ValueError(f"Unsupported qk_norm method: {qk_norm}")

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim, bias=proj_bias)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None,freqs_cis=None) -> torch.Tensor:
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, -1).permute(2, 0, 1, 3) 
        q, k, v = qkv.unbind(0)
        q, k = self.q_norm(q), self.k_norm(k)
        q = q.view(B, N, self.num_heads, self.head_dim)
        k = k.view(B, N, self.num_heads, self.head_dim)
        v = v.view(B, N, self.num_heads, self.head_dim).transpose(1, 2)
        
        if freqs_cis is not None:
            img_qq, img_kk = apply_rotary_emb(q, k, freqs_cis, head_first=False)
            assert (
                img_qq.shape == q.shape and img_kk.shape == k.shape
            ), f"img_kk: {img_qq.shape}, img_q: {q.shape}, img_kk: {img_kk.shape}, img_k: {k.shape}"
            q, k = img_qq, img_kk
        
        if mask is not None:
            mask = mask[:, None, None, :].expand(-1, self.num_heads,N, -1)  # (B, num_heads, N, N)
            mask = mask.to(dtype=q.dtype)
        if self.fused_attn:
            x = F.scaled_dot_product_attention(
                q.transpose(1, 2), k.transpose(1, 2), v,
                attn_mask=mask,
                dropout_p=self.attn_drop.p if self.training else 0.,
            )
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            if mask is not None:
                attn = attn.masked_fill(mask, float("-inf"))
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = attn @ v

        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class CrossAttention(nn.Module):
    """
    Cross-Attention module used in transformers
    """
    fused_attn: Final[bool]

    def __init__(
        self, dim: int,
        num_heads: int = 8, 
        proj_bias: bool = True,
        attn_drop: float = 0., 
        proj_drop: float = 0.,
        qkv_bias: bool = False, 
        qk_norm: Optional[str] = "rms_norm", 
        **block_kwargs
    ) -> None:
        super().__init__()

        assert dim % num_heads == 0, f"dim {dim} should be divisible by num_heads {num_heads}"
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5
        self.fused_attn = use_fused_attn()

        self.to_q = nn.Linear(dim, dim, bias=qkv_bias)
        self.to_kv = nn.Linear(dim, dim * 2, bias=qkv_bias)

        self.window_size = int(block_kwargs.get('window_size', 1))
        if self.window_size > 1:
            self.indices = (
                torch.arange(self.window_size) - (self.window_size - 1) // 2
            ).unsqueeze(0)            # 1, window_size, [-3, -2, -1, 0, 1, 2, 3]
            norm_dim = dim
        else:
            self.indices = None
            norm_dim = self.head_dim

        if qk_norm is None:
            self.q_norm = nn.Identity()
            self.k_norm = nn.Identity()
        elif qk_norm == "rms_norm":
            self.q_norm = RMSNorm(norm_dim, eps=1e-5)
            self.k_norm = RMSNorm(norm_dim, eps=1e-5)
        elif qk_norm == "layer_norm":
            self.q_norm = nn.LayerNorm(norm_dim, eps=1e-5)
            self.k_norm = nn.LayerNorm(norm_dim, eps=1e-5)
        else:
            raise ValueError(f"Unsupported qk_norm method: {qk_norm}")

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim, bias=proj_bias)
        self.proj_drop = nn.Dropout(proj_drop)
        
    def forward(self, x: torch.Tensor, y: torch.Tensor,mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        B, N, C = x.shape
        
        '''
        if self.window_size > 1:
            indices = (torch.arange(N).unsqueeze(1) + self.indices).to(x.device)   # N x window_size
            indices = indices.clamp(0, N - 1)
            attn_mask = torch.zeros(N, y.shape[1], dtype=x.dtype, device=x.device)  # N x N
            attn_mask = torch.scatter(attn_mask, dim=1, index=indices, value=1)     # N x N
            attn_mask = attn_mask.unsqueeze(0).unsqueeze(-1)                        # 1 x N x N x 1
            attn_mask = attn_mask.expand(-1, -1, -1, M)                             # 1 x N x N x M
            attn_mask = attn_mask.reshape(1, N, -1)                                 # 1 x N x (NxM)

            #x = rearrange(x, "b n c -> (b n) 1 c")
            y = rearrange(y, "b n m d -> b (n m) d")

            q = self.to_q(x)
            q = self.q_norm(q).reshape(-1, N, self.num_heads, self.head_dim).transpose(1, 2)

            kv = self.to_kv(y).reshape(-1, N*M, 2, self.num_heads*self.head_dim).permute(2, 0, 1, 3)
            k, v = kv.unbind(0)
            k = self.k_norm(k)
            k = k.view(-1, N*M, self.num_heads, self.head_dim).transpose(1, 2)
            v = v.view(-1, N*M, self.num_heads, self.head_dim).transpose(1, 2)
        else:
        '''
        '''
        # wsize = 1
        attn_mask = None

        x = rearrange(x, "b n c -> (b n) 1 c")
        y = rearrange(y, "b n m d -> (b n) m d")

        q = self.to_q(x).reshape(-1, 1, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
        kv = self.to_kv(y).reshape(-1, M, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
        k, v = kv.unbind(0)
        q, k = self.q_norm(q), self.k_norm(k)
        '''

        # wsize=all
        # attn_mask = None
        if y.shape==4:
            M = y.shape[2]
            y = rearrange(y, "b n m d -> b (n m) d")
        else:
            N2 = y.shape[1]
            M=N2//N
        q = self.to_q(x).reshape(B, -1, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
        kv = self.to_kv(y).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
        k, v = kv.unbind(0)
        q, k = self.q_norm(q), self.k_norm(k)
        if mask is not None:
            mask = mask[:, None, None, :].expand(-1, self.num_heads, M, -1)  # (B, num_heads, N, N)
            mask = rearrange(mask, "b n m d -> b n (m d)")
            mask=mask[:, :, None, :].expand(-1, -1, N, -1)
            mask = mask.to(dtype=q.dtype)
            # mask = mask.masked_fill(mask == 0, float("-inf"))
            
        if self.fused_attn:
            x = F.scaled_dot_product_attention(
                q, k, v,
                attn_mask=mask,
                dropout_p=self.attn_drop.p if self.training else 0.,
            )
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)         # B x N x (N*M)
            attn = attn.masked_fill(mask == 0, float(-1e-9))
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = attn @ v
        # B, H, N, C//H
        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x