File size: 32,871 Bytes
7758cff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 |
"""
Modules, Inculude:
- Attention: Attention module used in transformers
- MLP: MLP module used in transformers
- PositionalEncoding: Positional encoding module used in transformers
- ROPE: ROPE module used in transformers
"""
import os
import copy
import logging
import math
import numbers
from itertools import repeat
from collections import OrderedDict
import collections.abc
from functools import partial
from typing import Any, Callable, Dict, Optional, Set, Tuple, Type, Union, List, Final
try:
from typing import Literal
except ImportError:
from typing_extensions import Literal
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from einops import rearrange, repeat
from .posemb_layers import apply_rotary_emb
try:
from apex.normalization.fused_layer_norm import fused_layer_norm_affine
has_apex = True
except ImportError:
has_apex = False
try:
from apex.normalization.fused_layer_norm import fused_rms_norm_affine, fused_rms_norm
has_apex_rmsnorm = True
except ImportError:
has_apex_rmsnorm = False
has_torch_rms_norm = hasattr(F, 'rms_norm')
from .config import use_fused_attn
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
# From PyTorch internals
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
return tuple(x)
return tuple(repeat(x, n))
return parse
to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple
def make_divisible(v, divisor=8, min_value=None, round_limit=.9):
min_value = min_value or divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < round_limit * v:
new_v += divisor
return new_v
def extend_tuple(x, n):
# pads a tuple to specified n by padding with last value
if not isinstance(x, (tuple, list)):
x = (x,)
else:
x = tuple(x)
pad_n = n - len(x)
if pad_n <= 0:
return x[:n]
return x + (x[-1],) * pad_n
# RMS_NORM
def get_autocast_dtype(device: str = 'cuda'):
try:
return torch.get_autocast_dtype(device)
except (AttributeError, TypeError):
# dispatch to older device specific fns, only covering cuda/cpu devices here
if device == 'cpu':
return torch.get_autocast_cpu_dtype()
else:
assert device == 'cuda'
return torch.get_autocast_gpu_dtype()
def is_autocast_enabled(device: str = 'cuda'):
try:
return torch.is_autocast_enabled(device)
except TypeError:
# dispatch to older device specific fns, only covering cuda/cpu devices here
if device == 'cpu':
return torch.is_autocast_cpu_enabled()
else:
assert device == 'cuda'
return torch.is_autocast_enabled() # defaults cuda (only cuda on older pytorch)
_USE_FAST_NORM = False # defaulting to False for now
def is_fast_norm():
return _USE_FAST_NORM
def rms_norm(
x: torch.Tensor,
normalized_shape: List[int],
weight: Optional[torch.Tensor] = None,
eps: float = 1e-5,
):
norm_ndim = len(normalized_shape)
v = x.pow(2)
if torch.jit.is_scripting():
# ndim = len(x.shape)
# dims = list(range(ndim - norm_ndim, ndim)) # this doesn't work on pytorch <= 1.13.x
# NOTE -ve dims cause torchscript to crash in some cases, out of options to work around
assert norm_ndim == 1
v = torch.mean(v, dim=-1).unsqueeze(-1) # ts crashes with -ve dim + keepdim=True
else:
dims = tuple(range(-1, -norm_ndim - 1, -1))
v = torch.mean(v, dim=dims, keepdim=True)
x = x * torch.rsqrt(v + eps)
if weight is not None:
x = x * weight
return x
def fast_rms_norm(
x: torch.Tensor,
normalized_shape: List[int],
weight: Optional[torch.Tensor] = None,
eps: float = 1e-5,
) -> torch.Tensor:
if torch.jit.is_scripting():
# this must be by itself, cannot merge with has_apex_rmsnorm
return rms_norm(x, normalized_shape, weight, eps)
if has_apex_rmsnorm:
if weight is None:
return fused_rms_norm(x, normalized_shape, eps)
else:
return fused_rms_norm_affine(x, weight, normalized_shape, eps)
if is_autocast_enabled(x.device.type):
# normally native AMP casts LN inputs to float32
# apex LN does not, this is behaving like Apex
dt = get_autocast_dtype(x.device.type)
x, weight = x.to(dt), weight.to(dt)
with torch.autocast(device_type=x.device.type, enabled=False):
if has_torch_rms_norm:
x = F.rms_norm(x, normalized_shape, weight, eps)
else:
x = rms_norm(x, normalized_shape, weight, eps)
return x
class RMSNorm(nn.Module):
""" RMSNorm w/ fast (apex) norm if available
"""
__constants__ = ['normalized_shape', 'eps', 'elementwise_affine', '_fast_norm']
normalized_shape: Tuple[int, ...]
eps: float
elementwise_affine: bool
_fast_norm: bool
def __init__(self, channels, eps=1e-6, elementwise_affine=True, device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
normalized_shape = channels
if isinstance(normalized_shape, numbers.Integral):
# mypy error: incompatible types in assignment
normalized_shape = (normalized_shape,) # type: ignore[assignment]
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
self.eps = eps
self.elementwise_affine = elementwise_affine
self._fast_norm = is_fast_norm() # can't script unless we have these flags here (no globals)
if self.elementwise_affine:
self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
else:
self.register_parameter('weight', None)
self.reset_parameters()
def reset_parameters(self) -> None:
if self.elementwise_affine:
nn.init.ones_(self.weight)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# NOTE fast norm fallback needs our rms norm impl, so both paths through here.
# Since there is no built-in PyTorch impl, always use APEX RmsNorm if is installed.
if self._fast_norm:
x = fast_rms_norm(x, self.normalized_shape, self.weight, self.eps)
else:
x = rms_norm(x, self.normalized_shape, self.weight, self.eps)
return x
class Mlp(nn.Module):
""" MLP module used in transformers
"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
norm_layer=None,
bias=True,
drop=0.,
use_conv=False,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
#bias = to_2tuple(bias)
#drop_probs = to_2tuple(drop)
bias = [bias, bias]
drop_probs = [drop, drop]
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0])
self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.norm(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class MMsingle_attention(nn.Module):
"""
Self-Attention module used in transformers
"""
fused_attn: Final[bool]
def __init__(
self, dim: int,
num_heads: int = 8,
proj_bias: bool = True,
attn_drop: float = 0.,
proj_drop: float = 0.,
qkv_bias: bool = False,
qk_norm: Optional[str] = "rms_norm",
**block_kwargs
) -> None:
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divisible by num_heads {num_heads}"
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.attn_drop = nn.Dropout(attn_drop)
if qk_norm is None:
self.xs_q_norm = nn.Identity()
self.xs_k_norm = nn.Identity()
elif qk_norm == "rms_norm":
self.xs_q_norm = RMSNorm(self.head_dim, eps=1e-5)
self.xs_k_norm = RMSNorm(self.head_dim, eps=1e-5)
elif qk_norm == "layer_norm":
self.xs_q_norm = nn.LayerNorm(dim, eps=1e-5)
self.xs_k_norm = nn.LayerNorm(dim, eps=1e-5)
else:
raise ValueError(f"Unsupported qk_norm method: {qk_norm}")
def forward(self, txt_len,x: torch.Tensor, mask: Optional[torch.Tensor] = None,causal: bool = False,freqs_cis=None,freqs_cis2=None) -> torch.Tensor:
B, N1, C = x.shape
xs_qkv = x.reshape(B, N1, 3, -1)
xs_q, xs_k, xs_v = xs_qkv.permute(2, 0, 1, 3).unbind(0)
N2=N1//4
q = xs_q.view(B, N1, self.num_heads, self.head_dim)
k = xs_k.view(B, N1, self.num_heads, self.head_dim)
v = xs_v.view(B, N1, self.num_heads, self.head_dim).transpose(1, 2)
q, k = self.xs_q_norm(q), self.xs_k_norm(k)
if freqs_cis is not None or freqs_cis2 is not None:
img_q, txt_q = q[:, :txt_len, :, :], q[:, txt_len:, :, :]
img_k, txt_k = k[:, :txt_len, :, :], k[:, txt_len:, :, :]
img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
assert (
img_qq.shape == img_q.shape and img_kk.shape == img_k.shape
), f"img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}"
img_q, img_k = img_qq.transpose(1, 2), img_kk.transpose(1, 2)
if freqs_cis2 is not None:
txt_qq, txt_kk = apply_rotary_emb(txt_q, txt_k, freqs_cis2, head_first=False)
assert (
txt_qq.shape == txt_q.shape and txt_kk.shape == txt_k.shape
), f"img_kk: {txt_q.shape}, img_q: {txt_q.shape}, img_kk: {txt_kk.shape}, img_k: {txt_k.shape}"
txt_q, txt_k = txt_qq, txt_kk
q = torch.cat((img_q, txt_q.transpose(1, 2)), dim=2)
k = torch.cat((img_k, txt_k.transpose(1, 2)), dim=2)
if mask is not None:
mask = mask[:, None, None, :].expand(-1, self.num_heads,N1, -1) # (B, num_heads, N, N)
mask = mask.to(dtype=q.dtype)
if causal:
mask2 = torch.ones((N2+3*N2,N2+3*N2), dtype=torch.bool, device=v.device)
mask2[-N2-N2:, :N2]= 0
mask2[-N2-N2:-N2,-N2:]=0
mask2[-N2:,-N2-N2:-N2]=0
mask = mask2.to(dtype=torch.bool)
if self.fused_attn:
x = F.scaled_dot_product_attention(
q, k, v,
attn_mask=mask,
dropout_p=self.attn_drop.p if self.training else 0.,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if mask is not None:
attn = attn.masked_fill(mask, float("-inf"))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N1, -1)
return x
class MMfour_attention(nn.Module):
"""
Self-Attention module used in transformers
"""
fused_attn: Final[bool]
def __init__(
self, dim: int,
num_heads: int = 8,
proj_bias: bool = True,
attn_drop: float = 0.,
proj_drop: float = 0.,
qkv_bias: bool = False,
qk_norm: Optional[str] = "rms_norm",
**block_kwargs
) -> None:
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divisible by num_heads {num_heads}"
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.qkv_xs = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.qkv_au1 = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.qkv_au2 = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.qkv_au3 = nn.Linear(dim, dim * 3, bias=qkv_bias)
if qk_norm is None:
self.xs_q_norm = nn.Identity()
self.xs_k_norm = nn.Identity()
self.au_q_norm = nn.Identity()
self.au_k_norm = nn.Identity()
elif qk_norm == "rms_norm":
self.xs_q_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
self.xs_k_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
self.au_q_norm1 = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
self.au_k_norm1 = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
self.au_q_norm2 = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
self.au_k_norm2 = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
self.au_q_norm3 = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
self.au_k_norm3= RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
elif qk_norm == "layer_norm":
self.xs_q_norm = nn.LayerNorm(dim, eps=1e-5)
self.xs_k_norm = nn.LayerNorm(dim, eps=1e-5)
self.au_q_norm = nn.LayerNorm(dim, eps=1e-5)
self.au_k_norm = nn.LayerNorm(dim, eps=1e-5)
else:
raise ValueError(f"Unsupported qk_norm method: {qk_norm}")
self.attn_drop = nn.Dropout(attn_drop)
self.xs_proj = nn.Linear(dim, dim, bias=proj_bias)
self.au_proj1 = nn.Linear(dim, dim, bias=proj_bias)
self.au_proj2 = nn.Linear(dim, dim, bias=proj_bias)
self.au_proj3 = nn.Linear(dim, dim, bias=proj_bias)
self.xs_proj_drop = nn.Dropout(proj_drop)
self.au_proj_drop1 = nn.Dropout(proj_drop)
self.au_proj_drop2 = nn.Dropout(proj_drop)
self.au_proj_drop3 = nn.Dropout(proj_drop)
def forward(self, x: torch.Tensor, y1: torch.Tensor, y2: torch.Tensor,y3: torch.Tensor,mask: Optional[torch.Tensor] = None,causal=False,freqs_cis=None,freqs_cis2=None) -> Tuple[torch.Tensor, torch.Tensor]:
B, N1, C = x.shape
xs_qkv = self.qkv_xs(x).reshape(B, N1, 3, -1)
xs_q, xs_k, xs_v = xs_qkv.permute(2, 0, 1, 3).unbind(0)
B,N2,C= y1.shape
au_qkv1 = self.qkv_au1(y1).reshape(B, N2, 3, -1)
au_q1, au_k1, au_v1 = au_qkv1.permute(2, 0, 1, 3).unbind(0)
B,N3,C= y2.shape
au_qkv2 = self.qkv_au2(y2).reshape(B, N3, 3, -1)
au_q2, au_k2, au_v2 = au_qkv2.permute(2, 0, 1, 3).unbind(0)
B,N4,C= y3.shape
au_qkv3 = self.qkv_au3(y3).reshape(B, N4, 3, -1)
au_q3, au_k3, au_v3 = au_qkv3.permute(2, 0, 1, 3).unbind(0)
M=N2//N1
xs_q = xs_q.view(B, N1, self.num_heads, self.head_dim)
xs_k = xs_k.view(B, N1, self.num_heads, self.head_dim)
xs_v = xs_v.view(B, N1, self.num_heads, self.head_dim).transpose(1, 2)
xs_q, xs_k = self.xs_q_norm(xs_q), self.xs_k_norm(xs_k)
if freqs_cis is not None:
img_qq, img_kk = apply_rotary_emb(xs_q, xs_k, freqs_cis, head_first=False)
assert (
img_qq.shape == xs_q.shape and img_kk.shape == xs_k.shape
), f"img_kk: {img_qq.shape}, img_q: {xs_q.shape}, img_kk: {img_kk.shape}, img_k: {xs_k.shape}"
xs_q, xs_k = img_qq.transpose(1, 2), img_kk.transpose(1, 2)
au_q1=au_q1.view(B, N2, self.num_heads, self.head_dim)
au_k1=au_k1.view(B, N2, self.num_heads, self.head_dim)
au_v1=au_v1.view(B, N2, self.num_heads, self.head_dim).transpose(1, 2)
au_q1, au_k1 = self.au_q_norm1(au_q1), self.au_k_norm1(au_k1)
au_q2=au_q2.view(B, N3, self.num_heads, self.head_dim)
au_k2=au_k2.view(B, N3, self.num_heads, self.head_dim)
au_v2=au_v2.view(B, N3, self.num_heads, self.head_dim).transpose(1, 2)
au_q2, au_k2 = self.au_q_norm2(au_q2), self.au_k_norm2(au_k2)
au_q3=au_q3.view(B, N4, self.num_heads, self.head_dim)
au_k3=au_k3.view(B, N4, self.num_heads, self.head_dim)
au_v3=au_v3.view(B, N4, self.num_heads, self.head_dim).transpose(1, 2)
au_q3, au_k3 = self.au_q_norm3(au_q3), self.au_k_norm3(au_k3)
if freqs_cis2 is not None:
au_q11, au_k11 = apply_rotary_emb(au_q1, au_k1, freqs_cis2, head_first=False)
au_q1, au_k1 = au_q11, au_k11
assert (
au_q11.shape == au_q1.shape and au_k11.shape == au_k1.shape
), f"au_q11: {au_q11.shape}, img_q: {au_q1.shape}, img_kk: {au_k11.shape}, img_k: {au_k1.shape}"
q = torch.cat((xs_q, au_q1.transpose(1, 2),au_q2.transpose(1, 2),au_q3.transpose(1, 2)), dim=2)
k = torch.cat((xs_k, au_k1.transpose(1, 2),au_k2.transpose(1, 2),au_k3.transpose(1, 2)), dim=2)
v = torch.cat((xs_v, au_v1,au_v2,au_v3), dim=2)
if mask is not None:
# mask = mask[:, None, :] # (B, 1, N)
mask2 = mask[:, None, :].expand(-1, self.num_heads,-1)
mask = mask[:, None, None, :].expand(-1, self.num_heads,M, -1)
mask = rearrange(mask, "b n m d -> b n (m d)")
att_mask=torch.cat((mask2,mask),dim=-1)
att_mask=att_mask[:,:,None,:].expand(-1, -1,N1+N2, -1)
mask = att_mask.to(dtype=q.dtype)
if causal:
mask2 = torch.ones((N1+3*N2,N1+3*N2), dtype=torch.bool, device=v.device)
mask2[-N3-N4:, :N1] = 0
mask2[-N1-N1:-N1,-N1:]=0
mask2[-N1:,-N1-N1:-N1]=0
mask = mask2.to(dtype=torch.bool)
if self.fused_attn:
# print("yesyes")
x = F.scaled_dot_product_attention(
q, k, v,
attn_mask=mask,
dropout_p=self.attn_drop.p if self.training else 0.,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if mask is not None:
attn = attn.masked_fill(mask, float("-inf"))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N1+N2+N3+N4, C)
xs,au1,au2,au3=x[:,:N1],x[:,N1:N1+N2],x[:,N1+N2:N1+N2+N3],x[:,N1+N2+N3:N1+N2+N3+N4]
xs = self.xs_proj(xs)
xs = self.xs_proj_drop(xs)
au1 = self.au_proj1(au1)
au1 = self.au_proj_drop1(au1)
au2 = self.au_proj2(au2)
au2 = self.au_proj_drop2(au2)
au3 = self.au_proj3(au3)
au3 = self.au_proj_drop3(au3)
return xs,au1,au2,au3
class MMdual_attention(nn.Module):
"""
Self-Attention module used in transformers
"""
fused_attn: Final[bool]
def __init__(
self, dim: int,
num_heads: int = 8,
proj_bias: bool = True,
attn_drop: float = 0.,
proj_drop: float = 0.,
qkv_bias: bool = False,
qk_norm: Optional[str] = "rms_norm",
**block_kwargs
) -> None:
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divisible by num_heads {num_heads}"
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.qkv_xs = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.qkv_au = nn.Linear(dim, dim * 3, bias=qkv_bias)
if qk_norm is None:
self.xs_q_norm = nn.Identity()
self.xs_k_norm = nn.Identity()
self.au_q_norm = nn.Identity()
self.au_k_norm = nn.Identity()
elif qk_norm == "rms_norm":
self.xs_q_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
self.xs_k_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
self.au_q_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
self.au_k_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True)
elif qk_norm == "layer_norm":
self.xs_q_norm = nn.LayerNorm(dim, eps=1e-5)
self.xs_k_norm = nn.LayerNorm(dim, eps=1e-5)
self.au_q_norm = nn.LayerNorm(dim, eps=1e-5)
self.au_k_norm = nn.LayerNorm(dim, eps=1e-5)
else:
raise ValueError(f"Unsupported qk_norm method: {qk_norm}")
self.attn_drop = nn.Dropout(attn_drop)
self.xs_proj = nn.Linear(dim, dim, bias=proj_bias)
self.au_proj = nn.Linear(dim, dim, bias=proj_bias)
self.xs_proj_drop = nn.Dropout(proj_drop)
self.au_proj_drop = nn.Dropout(proj_drop)
def forward(self, seq_len,x: torch.Tensor, y: torch.Tensor, mask: Optional[torch.Tensor] = None,causal=False,freqs_cis=None,freqs_cis2=None) -> Tuple[torch.Tensor, torch.Tensor]:
B, N1, C = x.shape
xs_qkv = self.qkv_xs(x).reshape(B, N1, 3, -1)
xs_q, xs_k, xs_v = xs_qkv.permute(2, 0, 1, 3).unbind(0)
B,N2,C= y.shape
au_qkv = self.qkv_au(y).reshape(B, N2, 3, -1)
au_q, au_k, au_v = au_qkv.permute(2, 0, 1, 3).unbind(0)
xs_q = xs_q.view(B, N1, self.num_heads, self.head_dim)
xs_k = xs_k.view(B, N1, self.num_heads, self.head_dim)
xs_v = xs_v.view(B, N1, self.num_heads, self.head_dim).transpose(1, 2)
xs_q, xs_k = self.xs_q_norm(xs_q), self.xs_k_norm(xs_k)
if freqs_cis is not None:
img_qq, img_kk = apply_rotary_emb(xs_q, xs_k, freqs_cis, head_first=False)
assert (
img_qq.shape == xs_q.shape and img_kk.shape == xs_k.shape
), f"img_kk: {img_qq.shape}, img_q: {xs_q.shape}, img_kk: {img_kk.shape}, img_k: {xs_k.shape}"
xs_q, xs_k = img_qq.transpose(1, 2), img_kk.transpose(1, 2)
au_q=au_q.view(B, N2, self.num_heads, self.head_dim)
au_k=au_k.view(B, N2, self.num_heads, self.head_dim)
au_v=au_v.view(B, N2, self.num_heads, self.head_dim).transpose(1, 2)
au_q, au_k = self.au_q_norm(au_q), self.au_k_norm(au_k)
if freqs_cis2 is not None:
img_qq, img_kk = apply_rotary_emb(au_q, au_k, freqs_cis2, head_first=False)
assert (
img_qq.shape == au_q.shape and img_kk.shape == au_k.shape
), f"img_kk: {img_qq.shape}, img_q: {xs_q.shape}, img_kk: {img_kk.shape}, img_k: {xs_k.shape}"
au_q, au_k = img_qq, img_kk
q = torch.cat((xs_q, au_q.transpose(1, 2)), dim=2)
k = torch.cat((xs_k, au_k.transpose(1, 2)), dim=2)
v = torch.cat((xs_v, au_v), dim=2)
if mask is not None:
# mask = mask[:, None, :] # (B, 1, N)
mask2 = mask[:, None, :].expand(-1, self.num_heads,-1)
mask = mask[:, None, None, :].expand(-1, self.num_heads,M, -1)
mask = rearrange(mask, "b n m d -> b n (m d)")
att_mask=torch.cat((mask2,mask),dim=-1)
att_mask=att_mask[:,:,None,:].expand(-1, -1,N1+N2, -1)
mask = att_mask.to(dtype=q.dtype)
if causal:
mask2 = torch.ones((N1+3*N1,N1+3*N1), dtype=torch.bool, device=v.device)
mask2[-N1-N1:, :N1] = 0
mask2[-N1-N1:-N1,-N1:]=0
mask2[-N1:,-N1-N1:-N1]=0
mask = mask2.to(dtype=torch.bool)
if self.fused_attn:
x = F.scaled_dot_product_attention(
q, k, v,
attn_mask=mask,
dropout_p=self.attn_drop.p if self.training else 0.,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if mask is not None:
attn = attn.masked_fill(mask, float("-inf"))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N1+N2, C)
xs,au=x[:,:N1],x[:,N1:]
xs = self.xs_proj(xs)
xs = self.xs_proj_drop(xs)
au = self.au_proj(au)
au = self.au_proj_drop(au)
return xs,au
class SelfAttention(nn.Module):
"""
Self-Attention module used in transformers
"""
fused_attn: Final[bool]
def __init__(
self, dim: int,
num_heads: int = 8,
proj_bias: bool = True,
attn_drop: float = 0.,
proj_drop: float = 0.,
qkv_bias: bool = False,
qk_norm: Optional[str] = "rms_norm",
**block_kwargs
) -> None:
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divisible by num_heads {num_heads}"
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
if qk_norm is None:
self.q_norm = nn.Identity()
self.k_norm = nn.Identity()
elif qk_norm == "rms_norm":
self.q_norm = RMSNorm(dim, eps=1e-5)
self.k_norm = RMSNorm(dim, eps=1e-5)
elif qk_norm == "layer_norm":
self.q_norm = nn.LayerNorm(dim, eps=1e-5)
self.k_norm = nn.LayerNorm(dim, eps=1e-5)
else:
raise ValueError(f"Unsupported qk_norm method: {qk_norm}")
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim, bias=proj_bias)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None,freqs_cis=None) -> torch.Tensor:
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, -1).permute(2, 0, 1, 3)
q, k, v = qkv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
q = q.view(B, N, self.num_heads, self.head_dim)
k = k.view(B, N, self.num_heads, self.head_dim)
v = v.view(B, N, self.num_heads, self.head_dim).transpose(1, 2)
if freqs_cis is not None:
img_qq, img_kk = apply_rotary_emb(q, k, freqs_cis, head_first=False)
assert (
img_qq.shape == q.shape and img_kk.shape == k.shape
), f"img_kk: {img_qq.shape}, img_q: {q.shape}, img_kk: {img_kk.shape}, img_k: {k.shape}"
q, k = img_qq, img_kk
if mask is not None:
mask = mask[:, None, None, :].expand(-1, self.num_heads,N, -1) # (B, num_heads, N, N)
mask = mask.to(dtype=q.dtype)
if self.fused_attn:
x = F.scaled_dot_product_attention(
q.transpose(1, 2), k.transpose(1, 2), v,
attn_mask=mask,
dropout_p=self.attn_drop.p if self.training else 0.,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if mask is not None:
attn = attn.masked_fill(mask, float("-inf"))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class CrossAttention(nn.Module):
"""
Cross-Attention module used in transformers
"""
fused_attn: Final[bool]
def __init__(
self, dim: int,
num_heads: int = 8,
proj_bias: bool = True,
attn_drop: float = 0.,
proj_drop: float = 0.,
qkv_bias: bool = False,
qk_norm: Optional[str] = "rms_norm",
**block_kwargs
) -> None:
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divisible by num_heads {num_heads}"
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.to_q = nn.Linear(dim, dim, bias=qkv_bias)
self.to_kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.window_size = int(block_kwargs.get('window_size', 1))
if self.window_size > 1:
self.indices = (
torch.arange(self.window_size) - (self.window_size - 1) // 2
).unsqueeze(0) # 1, window_size, [-3, -2, -1, 0, 1, 2, 3]
norm_dim = dim
else:
self.indices = None
norm_dim = self.head_dim
if qk_norm is None:
self.q_norm = nn.Identity()
self.k_norm = nn.Identity()
elif qk_norm == "rms_norm":
self.q_norm = RMSNorm(norm_dim, eps=1e-5)
self.k_norm = RMSNorm(norm_dim, eps=1e-5)
elif qk_norm == "layer_norm":
self.q_norm = nn.LayerNorm(norm_dim, eps=1e-5)
self.k_norm = nn.LayerNorm(norm_dim, eps=1e-5)
else:
raise ValueError(f"Unsupported qk_norm method: {qk_norm}")
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim, bias=proj_bias)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x: torch.Tensor, y: torch.Tensor,mask: Optional[torch.Tensor] = None) -> torch.Tensor:
B, N, C = x.shape
'''
if self.window_size > 1:
indices = (torch.arange(N).unsqueeze(1) + self.indices).to(x.device) # N x window_size
indices = indices.clamp(0, N - 1)
attn_mask = torch.zeros(N, y.shape[1], dtype=x.dtype, device=x.device) # N x N
attn_mask = torch.scatter(attn_mask, dim=1, index=indices, value=1) # N x N
attn_mask = attn_mask.unsqueeze(0).unsqueeze(-1) # 1 x N x N x 1
attn_mask = attn_mask.expand(-1, -1, -1, M) # 1 x N x N x M
attn_mask = attn_mask.reshape(1, N, -1) # 1 x N x (NxM)
#x = rearrange(x, "b n c -> (b n) 1 c")
y = rearrange(y, "b n m d -> b (n m) d")
q = self.to_q(x)
q = self.q_norm(q).reshape(-1, N, self.num_heads, self.head_dim).transpose(1, 2)
kv = self.to_kv(y).reshape(-1, N*M, 2, self.num_heads*self.head_dim).permute(2, 0, 1, 3)
k, v = kv.unbind(0)
k = self.k_norm(k)
k = k.view(-1, N*M, self.num_heads, self.head_dim).transpose(1, 2)
v = v.view(-1, N*M, self.num_heads, self.head_dim).transpose(1, 2)
else:
'''
'''
# wsize = 1
attn_mask = None
x = rearrange(x, "b n c -> (b n) 1 c")
y = rearrange(y, "b n m d -> (b n) m d")
q = self.to_q(x).reshape(-1, 1, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
kv = self.to_kv(y).reshape(-1, M, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
k, v = kv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
'''
# wsize=all
# attn_mask = None
if y.shape==4:
M = y.shape[2]
y = rearrange(y, "b n m d -> b (n m) d")
else:
N2 = y.shape[1]
M=N2//N
q = self.to_q(x).reshape(B, -1, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
kv = self.to_kv(y).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
k, v = kv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
if mask is not None:
mask = mask[:, None, None, :].expand(-1, self.num_heads, M, -1) # (B, num_heads, N, N)
mask = rearrange(mask, "b n m d -> b n (m d)")
mask=mask[:, :, None, :].expand(-1, -1, N, -1)
mask = mask.to(dtype=q.dtype)
# mask = mask.masked_fill(mask == 0, float("-inf"))
if self.fused_attn:
x = F.scaled_dot_product_attention(
q, k, v,
attn_mask=mask,
dropout_p=self.attn_drop.p if self.training else 0.,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1) # B x N x (N*M)
attn = attn.masked_fill(mask == 0, float(-1e-9))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
# B, H, N, C//H
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
|