File size: 112,484 Bytes
7758cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
from __future__ import annotations
from typing import Callable

import math
from copy import deepcopy
from random import random, randrange
from packaging import version

import torch
from torch.amp import autocast
import torch.nn.functional as F
from torch import nn, einsum, tensor, Tensor, cat, stack, arange, is_tensor
from torch.utils._pytree import tree_flatten, tree_unflatten
from torch.nn import Module, ModuleList, ModuleDict

from functools import partial, wraps
from collections import namedtuple
from contextlib import nullcontext
from dataclasses import dataclass

from loguru import logger

from x_transformers.attend import Attend, Intermediates
from x_transformers.autoregressive_wrapper import AutoregressiveWrapper

import einx
from einops.layers.torch import Rearrange
from einops import rearrange, repeat, reduce, pack, unpack

# einstein notation

# b - batch
# n - sequence
# d - feature dimension
# h - attention heads
# i, j - sequence (source, target)

# constants

DEFAULT_DIM_HEAD = 64

@dataclass
class LayerIntermediates:
    hiddens:            list[Tensor] | None = None   # all hiddens, before the final norm (in pre-norm architecture)
    last_hidden:        Tensor | None = None         # very last hidden after all attention layers, after the final norm
    attn_intermediates: list[Intermediates] | None = None
    layer_hiddens:      list[Tensor] | None = None
    attn_z_loss:        Tensor | None = None
    mems:               Tensor | None = None
    memory_tokens:      Tensor | None = None
    logit_entropies:    Tensor | None = None

LinearNoBias = partial(nn.Linear, bias = False)

# helpers

def exists(val):
    return val is not None

def default(val, d):
    if exists(val):
        return val
    return d() if callable(d) else d

def identity(t, *args, **kwargs):
    return t

def first(it, default = None):
    return it[0] if len(it) > 0 else default

def is_empty(x):
    return len(x) == 0

def cast_tuple(val, depth = 1):
    return val if isinstance(val, tuple) else (val,) * depth

def divisible_by(num, den):
    return (num % den) == 0

def maybe(fn = None):
    if not exists(fn):
        fn = identity

    @wraps(fn)
    def inner(x, *args, **kwargs):
        if not exists(x):
            return x
        return fn(x, *args, **kwargs)
    return inner

def at_most_one_of(*bools):
    return sum(map(int, bools)) <= 1

class always():
    def __init__(self, val):
        self.val = val
    def __call__(self, *args, **kwargs):
        return self.val

class not_equals():
    def __init__(self, val):
        self.val = val
    def __call__(self, x, *args, **kwargs):
        return x != self.val

class equals():
    def __init__(self, val):
        self.val = val
    def __call__(self, x, *args, **kwargs):
        return x == self.val

def Sequential(*modules):
    return nn.Sequential(*filter(exists, modules))

# tensor helpers

def log(t, eps = 1e-20):
    return t.clamp(min = eps).log()

def max_neg_value(tensor):
    return -torch.finfo(tensor.dtype).max

def l2norm(t, groups = 1):
    t = rearrange(t, '... (g d) -> ... g d', g = groups)
    t = F.normalize(t, p = 2, dim = -1)
    return rearrange(t, '... g d -> ... (g d)')

def softclamp(t, value):
    return (t / value).tanh() * value

def masked_mean(t, mask = None, dim = 1):
    if not exists(mask):
        return t.mean(dim = dim)

    dims_append = (1,) * (t.ndim - mask.ndim)
    mask = mask.reshape(*mask.shape, *dims_append)

    num = (t * mask).sum(dim = dim)
    den = mask.sum(dim = dim).clamp(min = 1.)
    return num / den

def pad_at_dim(t, pad: tuple[int, int], dim = -1, value = 0.):
    if pad == (0, 0):
        return t

    dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
    zeros = ((0, 0) * dims_from_right)
    return F.pad(t, (*zeros, *pad), value = value)

def or_reduce(masks):
    head, *body = masks
    for rest in body:
        head = head | rest
    return head

# entropy

def calc_entropy(
    t: Tensor,
    is_prob = False
):
    prob = t.softmax(dim = -1) if not is_prob else t
    return -(prob * log(prob)).sum(dim = -1)

# auxiliary loss helpers

def calc_z_loss(
    pre_softmax_attns: list[Tensor],
    mask = None,
    weight = 1.
):
    # the same loss applied to the mixture of experts router logits in https://arxiv.org/abs/2202.08906
    # in the paper, in a tiny footnote, they mention using it on attention logits with stabilizing effects
    # also used in PaLM as one of the measures

    lse = 0.

    for attn in pre_softmax_attns:
        lse = lse + attn.logsumexp(dim = -1)

    loss = torch.square(lse)
    loss = reduce(loss, 'b h n -> b n', 'sum')

    if not exists(mask):
        return loss.mean() * weight

    loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5)
    return loss * weight

# init helpers

def init_zero_(layer):
    nn.init.constant_(layer.weight, 0.)
    if exists(layer.bias):
        nn.init.constant_(layer.bias, 0.)

# keyword argument helpers

def pick_and_pop(keys, d):
    values = tuple(d.pop(key) for key in  keys)
    return dict(zip(keys, values))

def group_dict_by_key(cond, d):
    return_val = [dict(),dict()]
    for key in d.keys():
        match = bool(cond(key))
        ind = int(not match)
        return_val[ind][key] = d[key]
    return tuple(return_val)

def string_begins_with(prefix, str):
    return str.startswith(prefix)

def group_by_key_prefix(prefix, d):
    return group_dict_by_key(partial(string_begins_with, prefix), d)

def groupby_prefix_and_trim(prefix, d):
    kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
    prefix_len = len(prefix)
    kwargs_without_prefix = {key[prefix_len:]: value for key, value in kwargs_with_prefix.items()}
    return kwargs_without_prefix, kwargs

# structured dropout, more effective than traditional attention dropouts

def dropout_seq(seq, mask, dropout):
    b, n, *_, device = *seq.shape, seq.device
    logits = torch.randn(b, n, device = device)

    if exists(mask):
        mask_value = max_neg_value(logits)
        logits = logits.masked_fill(~mask, mask_value)

    keep_prob = 1. - dropout
    num_keep = max(1,  int(keep_prob * n))
    keep_indices = logits.topk(num_keep, dim = 1).indices

    batch_indices = arange(b, device = device)
    batch_indices = rearrange(batch_indices, 'b -> b 1')

    seq = seq[batch_indices, keep_indices]

    if exists(mask):
        seq_counts = mask.sum(dim = -1)
        seq_keep_counts = torch.ceil(seq_counts * keep_prob).int()
        keep_mask = arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1')

        mask = mask[batch_indices, keep_indices] & keep_mask

    return seq, mask

# activations

class ReluSquared(Module):
    def forward(self, x):
        return F.relu(x) ** 2

# embedding

class TokenEmbedding(Module):
    def __init__(self, dim, num_tokens, l2norm_embed = False):
        super().__init__()
        self.l2norm_embed = l2norm_embed
        self.emb = nn.Embedding(num_tokens, dim)

    def forward(self, x):
        token_emb = self.emb(x.long())
        return l2norm(token_emb) if self.l2norm_embed else token_emb

    def init_(self):
        if self.l2norm_embed:
            nn.init.normal_(self.emb.weight, std=1e-5)
            return
        nn.init.kaiming_normal_(self.emb.weight)

# positional embeddings

class AbsolutePositionalEmbedding(Module):
    def __init__(self, dim, max_seq_len, l2norm_embed = False):
        super().__init__()
        self.scale = dim ** -0.5 if not l2norm_embed else 1.
        self.max_seq_len = max_seq_len
        self.l2norm_embed = l2norm_embed
        self.emb = nn.Embedding(max_seq_len, dim)

    def forward(self, x, pos = None, seq_start_pos = None):
        seq_len, device = x.shape[1], x.device
        assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'

        if not exists(pos):
            pos = arange(seq_len, device = device)

        if exists(seq_start_pos):
            pos = (pos - seq_start_pos[..., None]).clamp(min = 0)

        pos_emb = self.emb(pos)
        pos_emb = pos_emb * self.scale
        return l2norm(pos_emb) if self.l2norm_embed else pos_emb

class ScaledSinusoidalEmbedding(Module):
    def __init__(self, dim, theta = 10000):
        super().__init__()
        assert divisible_by(dim, 2)
        self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)

        half_dim = dim // 2
        freq_seq = arange(half_dim).float() / half_dim
        inv_freq = theta ** -freq_seq
        self.register_buffer('inv_freq', inv_freq, persistent = False)

    def forward(self, x, pos = None, seq_start_pos = None):
        seq_len, device = x.shape[1], x.device

        if not exists(pos):
            pos = arange(seq_len, device = device)

        if exists(seq_start_pos):
            pos = pos - seq_start_pos[..., None]

        emb = einsum('i, j -> i j', pos, self.inv_freq)
        emb = cat((emb.sin(), emb.cos()), dim = -1)
        return emb * self.scale

class RelativePositionBias(Module):
    def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8):
        super().__init__()
        self.scale = scale
        self.causal = causal
        self.num_buckets = num_buckets
        self.max_distance = max_distance
        self.relative_attention_bias = nn.Embedding(num_buckets, heads)

    @staticmethod
    def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128):
        ret = 0
        n = -relative_position
        if not causal:
            num_buckets //= 2
            ret += (n < 0).long() * num_buckets
            n = torch.abs(n)
        else:
            n = torch.max(n, torch.zeros_like(n))

        max_exact = num_buckets // 2
        is_small = n < max_exact

        val_if_large = max_exact + (
            torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
        ).long()
        val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))

        ret += torch.where(is_small, n, val_if_large)
        return ret

    @property
    def device(self):
        return next(self.parameters()).device

    def forward(self, i, j):
        device = self.device
        q_pos = arange(j - i, j, dtype = torch.long, device = device)
        k_pos = arange(j, dtype = torch.long, device = device)
        rel_pos = einx.subtract('j, i -> i j', k_pos, q_pos)
        rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance)
        values = self.relative_attention_bias(rp_bucket)
        bias = rearrange(values, 'i j h -> h i j')
        return bias * self.scale

class CoPE(Module):
    """
    Appendix B of https://arxiv.org/abs/2405.18719
    """
    def __init__ (
        self,
        dim,
        heads,
        max_pos,
        soft_onehot = False,
        talking_heads = False,
        soft_onehot_temp = 5e-2
    ):
        super () . __init__ ()
        self.max_pos = max_pos
        self.pos_emb = nn.Parameter(torch.zeros(max_pos, dim))

        self.talking_heads = nn.Conv2d(heads, heads, 1, bias = False) if talking_heads else None
        self.soft_onehot = soft_onehot
        self.soft_onehot_temp = soft_onehot_temp

        if not soft_onehot:
            return

        self.register_buffer('positions', arange(max_pos))

    def forward(self, query, attn_logits):

        if exists(self.talking_heads):
            i, j = attn_logits.shape[-2:]
            causal_mask = attn_logits.new_ones(i, j).triu_(j - i + 1).bool()

            attn_logits = self.talking_heads(attn_logits)

            attn_logits = attn_logits.masked_fill(causal_mask, -torch.finfo(attn_logits.dtype).max)

        # compute positions

        gates = attn_logits.sigmoid()

        pos = gates.flip(-1).cumsum(dim = -1).flip(-1)
        pos = pos.clamp(max = self.max_pos - 1)

        logits_int = einsum('b h n d, p d -> b h n p', query, self.pos_emb)

        if self.soft_onehot:
            diff_pos = einx.subtract('i, j -> i j', pos, self.positions).abs()
            soft_onehot_pos = F.softmax(-diff_pos / self.soft_onehot_temp, dim = -1)
            cope_pos_emb = einsum('b h i j p, b h i p -> b h i j', soft_onehot_pos, logits_int)
        else:
            # interpolate from integer positions
            pos_ceil = pos.ceil().long()
            pos_floor = pos.floor().long()
            logits_ceil = logits_int.gather(-1, pos_ceil)
            logits_floor = logits_int.gather(-1, pos_floor)

            w = pos - pos_floor
            cope_pos_emb = logits_ceil * w + logits_floor * (1 - w)

        return cope_pos_emb

class DynamicPositionBias(Module):
    def __init__(self, dim, *, heads, depth, log_distance = False, norm = False):
        super().__init__()
        assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1'
        self.log_distance = log_distance

        self.mlp = ModuleList([])

        self.mlp.append(Sequential(
            nn.Linear(1, dim),
            LayerNorm(dim) if norm else None,
            nn.SiLU()
        ))

        for _ in range(depth - 1):
            self.mlp.append(Sequential(
                nn.Linear(dim, dim),
                nn.LayerNorm(dim) if norm else None,
                nn.SiLU()
            ))

        self.mlp.append(nn.Linear(dim, heads))

    @property
    def device(self):
        return next(self.parameters()).device

    def forward(self, i, j):
        n, device = j, self.device

        # get the (n x n) matrix of distances
        seq_arange = arange(j - i, j, device = device)
        context_arange = arange(j, device = device)
        indices = einx.subtract('i, j -> i j', seq_arange, context_arange)
        indices += (j - 1)

        # input to continuous positions MLP
        pos = arange(-j + 1, j, device = device).float()
        pos = rearrange(pos, '... -> ... 1')

        if self.log_distance:
            pos = torch.sign(pos) * torch.log(pos.abs() + 1)  # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1)

        for layer in self.mlp:
            pos = layer(pos)

        # get position biases        
        bias = pos[indices]
        bias = rearrange(bias, 'i j h -> h i j')
        return bias

class AlibiPositionalBias(Module):
    def __init__(
        self,
        heads,
        total_heads = None,
        slopes: list[int] | None = None,
        **kwargs
    ):
        super().__init__()
        self.heads = heads
        self.total_heads = default(total_heads, heads)

        slopes = Tensor(default(slopes, self._get_slopes(heads)))
        slopes = rearrange(slopes, 'h -> h 1 1')

        self.register_buffer('slopes', slopes, persistent = False)
        self.register_buffer('bias', None, persistent = False)
    
    @property
    def device(self):
        return next(self.buffers()).device

    @staticmethod
    def _get_slopes(heads):
        def get_slopes_power_of_2(n):
            start = (2**(-2**-(math.log2(n)-3)))
            ratio = start
            return [start*ratio**i for i in range(n)]

        if math.log2(heads).is_integer():
            return get_slopes_power_of_2(heads)

        closest_power_of_2 = 2 ** math.floor(math.log2(heads))
        return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2]

    def forward_custom_pos(
        self,
        pos_i: Tensor,
        pos_j: Tensor | None = None
    ):
        h, device = self.total_heads, self.device

        pos_j = default(pos_j, pos_i)
        bias = -einx.subtract('... j, ... i -> ... i j', pos_j, pos_i).abs()

        if bias.ndim == 3:
            bias = rearrange(bias, 'b i j -> b 1 i j')

        bias = bias * self.slopes
        num_heads_unalibied = h - bias.shape[-3]
        bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = -3)

        return bias

    def forward(self, i, j):
        h, device = self.total_heads, self.device

        if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i:
            return self.bias[..., -i:, -j:]

        seq_arange = arange(j - i, j, device = device)
        context_arange = arange(j, device = device)
        bias = -einx.subtract('j, i -> 1 i j', context_arange, seq_arange).abs()

        bias = bias * self.slopes
        num_heads_unalibied = h - bias.shape[-3]
        bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = -3)

        self.register_buffer('bias', bias, persistent = False)
        return self.bias

class DataDependentAlibi(Module):
    """ https://openreview.net/forum?id=q2Lnyegkr8 """

    def __init__(
        self,
        dim,
        heads,
        causal = True,
        bias_init = 5.,
        post_log_scale = 1.,
    ):
        super().__init__()

        self.causal = causal

        linear = nn.Linear(dim, heads * (1 if causal else 2))

        self.to_forget_gates = nn.Sequential(
            linear,
            Rearrange('b n h -> b h n'),
            nn.LogSigmoid()
        )

        nn.init.constant_(linear.bias, bias_init)
        self.post_log_scale = post_log_scale

    def forward(self, x):
        bidirectional = not self.causal

        forget_gates = self.to_forget_gates(x) * self.post_log_scale

        forget_gates = forget_gates.cumsum(dim = -1)

        if bidirectional:
            forget_gates, forget_gates_reversed = forget_gates.chunk(2, dim = 1)

        forget_gates = einx.subtract('b h i, b h j -> b h i j', forget_gates, forget_gates)

        if bidirectional:
            forget_gates_reversed = einx.subtract('b h j, b h i -> b h i j', forget_gates_reversed, forget_gates_reversed)
            forget_gates = forget_gates.tril() + forget_gates_reversed.triu()

        return forget_gates

class PerRowDataDependentAlibi(Module):
    """ same as data dependent alibi from forgetting transformer, but the forgetting gates are also derived by a queries and keys with a small head dimension """

    def __init__(
        self,
        dim,
        heads,
        causal = True,
        dim_head = 8,
        post_log_scale = 1.
    ):
        super().__init__()
        assert causal, 'bidirectional not supported yet'

        self.scale = dim_head ** -0.5

        linear = nn.Linear(dim, heads * dim_head * 2, bias = False)

        self.to_forget_gates = nn.Sequential(
            linear,
            Rearrange('b n (qk h d) -> qk b h n d', qk = 2, d = dim_head)
        )

        self.post_log_scale = post_log_scale

    def forward(self, x):
        q, k = self.to_forget_gates(x)
        forget_gates = einsum('... i d, ... j d -> ... i j', q, k) * self.scale

        forget_gates = F.logsigmoid(forget_gates) * self.post_log_scale

        # mask out upper triangle + diagonal

        n = x.shape[-2]
        causal_mask = torch.ones((n, n), dtype = torch.bool, device = x.device).triu()

        forget_gates = forget_gates.masked_fill(causal_mask, 0.)

        # reverse cumsum

        forget_gates = forget_gates.flip(dims = (-1,))
        forget_gates = forget_gates.cumsum(dim = -1)
        forget_gates = forget_gates.flip(dims = (-1,))

        return forget_gates

class RotaryEmbedding(Module):
    def __init__(
        self,
        dim,
        use_xpos = False,
        scale_base = 512,
        interpolation_factor = 1.,
        base = 10000,
        base_rescale_factor = 1.
    ):
        super().__init__()
        # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
        # has some connection to NTK literature
        # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
        base *= base_rescale_factor ** (dim / (dim - 2))

        inv_freq = 1. / (base ** (arange(0, dim, 2).float() / dim))
        self.register_buffer('inv_freq', inv_freq)

        assert interpolation_factor >= 1.
        self.interpolation_factor = interpolation_factor

        if not use_xpos:
            self.register_buffer('scale', None)
            return

        scale = (arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)

        self.scale_base = scale_base
        self.register_buffer('scale', scale)

    def forward_from_seq_len(self, seq_len,interpolation_factor=1):
        device = self.inv_freq.device

        t = arange(seq_len, device = device)
        return self.forward(t,interpolation_factor=interpolation_factor)

    @autocast('cuda', enabled = False)
    def forward(self, t,interpolation_factor=1):
        max_pos = t.max() + 1

        if t.ndim == 1:
            t = rearrange(t, 'n -> 1 n')

        freqs = torch.einsum('b i , j -> b i j', t.type_as(self.inv_freq), self.inv_freq) * interpolation_factor
        freqs = stack((freqs, freqs), dim = -1)
        freqs = rearrange(freqs, '... d r -> ... (d r)')

        if not exists(self.scale):
            return freqs, 1.

        power = (t - (max_pos // 2)) / self.scale_base
        scale = self.scale ** rearrange(power, '... n -> ... n 1')
        scale = stack((scale, scale), dim = -1)
        scale = rearrange(scale, '... d r -> ... (d r)')

        return freqs, scale

def rotate_half(x):
    x = rearrange(x, '... (d r) -> ... d r', r = 2)
    x1, x2 = x.unbind(dim = -1)
    x = stack((-x2, x1), dim = -1)
    return rearrange(x, '... d r -> ... (d r)')

@autocast('cuda', enabled = False)
def apply_rotary_pos_emb(t, freqs, scale = 1):
    rot_dim, seq_len, orig_dtype = freqs.shape[-1], t.shape[-2], t.dtype

    freqs = freqs[:, -seq_len:, :]
    scale = scale[:, -seq_len:, :] if isinstance(scale, torch.Tensor) else scale

    if t.ndim == 4 and freqs.ndim == 3:
        freqs = rearrange(freqs, 'b n d -> b 1 n d')

    # partial rotary embeddings, Wang et al. GPT-J
    t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
    t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
    out = cat((t, t_unrotated), dim = -1)

    return out.type(orig_dtype)

# norms

class Scale(Module):
    def __init__(self, value, fn):
        super().__init__()
        self.value = value
        self.fn = fn

    def forward(self, x, **kwargs):
        out = self.fn(x, **kwargs)
        scale_fn = lambda t: t * self.value

        if not isinstance(out, tuple):
            return scale_fn(out)

        return (scale_fn(out[0]), *out[1:])

class LayerNorm(Module):
    def __init__(
        self,
        dim,
        unit_offset = False
    ):
        """
        bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
        """
        super().__init__()
        self.unit_offset = unit_offset

        self.ln = nn.LayerNorm(dim, elementwise_affine = False)
        self.gamma = nn.Parameter(torch.ones(dim))
        nn.init.constant_(self.gamma, 1. - float(unit_offset))

    def forward(self, x):
        normed = self.ln(x)
        gamma = self.gamma + float(self.unit_offset)
        return normed * gamma

class AdaptiveLayerNorm(Module):
    def __init__(
        self,
        dim,
        dim_condition = None
    ):
        super().__init__()
        dim_condition = default(dim_condition, dim)

        self.ln = nn.LayerNorm(dim, elementwise_affine = False)
        self.to_gamma = LinearNoBias(dim_condition, dim)
        nn.init.zeros_(self.to_gamma.weight)

    def forward(self, x, *, condition):
        if condition.ndim == 2:
            condition = rearrange(condition, 'b d -> b 1 d')

        normed = self.ln(x)
        gamma = self.to_gamma(condition)
        return normed * (gamma + 1.)

class ScaleNorm(Module):
    def __init__(
        self,
        dim,
        unit_offset = False
    ):
        super().__init__()
        self.unit_offset = unit_offset
        self.scale = dim ** 0.5

        self.g = nn.Parameter(torch.zeros(1))
        nn.init.constant_(self.g, 1. - float(unit_offset))

    def forward(self, x):
        gamma = self.g + float(self.unit_offset)
        return F.normalize(x, dim = -1) * self.scale * gamma

class RMSNorm(Module):
    def __init__(
        self,
        dim,
        unit_offset = False
    ):
        super().__init__()
        self.unit_offset = unit_offset
        self.scale = dim ** 0.5

        self.g = nn.Parameter(torch.zeros(dim))
        nn.init.constant_(self.g, 1. - float(unit_offset))

    def forward(self, x):
        gamma = self.g + float(self.unit_offset)
        return F.normalize(x, dim = -1) * self.scale * gamma

class AdaptiveRMSNorm(Module):
    def __init__(
        self,
        dim,
        dim_condition = None
    ):
        super().__init__()
        self.scale = dim ** 0.5
        dim_condition = default(dim_condition, dim)

        self.to_gamma = LinearNoBias(dim_condition, dim)
        nn.init.zeros_(self.to_gamma.weight)

    def forward(self, x, *, condition):
        if condition.ndim == 2:
            condition = rearrange(condition, 'b d -> b 1 d')

        normed = F.normalize(x, dim = -1)
        gamma = self.to_gamma(condition)
        return normed * self.scale * (gamma + 1.)

class SimpleRMSNorm(Module):
    def __init__(
        self,
        dim,
        **kwargs
    ):
        super().__init__()
        self.scale = dim ** 0.5

    def forward(self, x):
        return F.normalize(x, dim = -1) * self.scale

class MultiheadRMSNorm(Module):
    def __init__(self, dim, heads):
        super().__init__()
        self.rmsnorm = SimpleRMSNorm(dim)
        self.gamma = nn.Parameter(torch.zeros(heads, 1, dim))

    def forward(self, x):
        return self.rmsnorm(x) * (self.gamma + 1.)

class DynamicTanh(Module):
    """ https://arxiv.org/abs/2503.10622 """
    def __init__(
        self,
        dim,
        init_alpha = 1.,
        gamma = 1.,
        beta = 0.,
        unit_offset = False
    ):
        super().__init__()
        self.pre_tanh_scale = nn.Parameter(tensor(init_alpha))

        self.gamma = nn.Parameter(torch.ones(dim))
        self.beta = nn.Parameter(torch.zeros(dim))

        self.pre_tanh_scale_offset = init_alpha if unit_offset else 0.
        self.gamma_offset = float(unit_offset)

        nn.init.constant_(self.pre_tanh_scale, 0 if unit_offset else init_alpha)
        nn.init.constant_(self.gamma, 1. - float(unit_offset))

    def forward(self, x):
        pre_tanh_scale = self.pre_tanh_scale + self.pre_tanh_scale_offset
        gamma = self.gamma + self.gamma_offset
        return (x * pre_tanh_scale).tanh() * gamma + self.beta

# residual and residual gates

class Residual(Module):
    def __init__(self, dim, scale_residual = False, scale_residual_constant = 1., **kwargs):
        super().__init__()
        self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
        self.scale_residual_constant = scale_residual_constant

    def prepare(self, residual):
        return residual, residual, dict()

    def forward(self, x, residual, **kwargs):
        if exists(self.residual_scale):
            residual = residual * self.residual_scale

        if self.scale_residual_constant != 1:
            residual = residual * self.scale_residual_constant

        return x + residual

class GRUGating(Module):
    def __init__(self, dim, scale_residual = False, **kwargs):
        super().__init__()
        self.gru = nn.GRUCell(dim, dim)
        self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None

    def prepare(self, residual):
        return residual, residual, dict()

    def forward(self, x, residual, **kwargs):
        if exists(self.residual_scale):
            residual = residual * self.residual_scale

        gated_output = self.gru(
            rearrange(x, 'b n d -> (b n) d'),
            rearrange(residual, 'b n d -> (b n) d')
        )

        return gated_output.reshape_as(x)

# hyper connections

class HyperConnection(Module):
    def __init__(
        self,
        dim,
        *,
        layer_index,
        num_residual_streams,
        num_input_views = 1,
        tanh = True,
        **kwargs
    ):
        """
        https://arxiv.org/abs/2409.19606
        Appendix J - Algorithm 2, Dynamic only
        """
        super().__init__()

        self.act = nn.Tanh() if tanh else nn.Identity()

        self.norm = nn.LayerNorm(dim, bias = False)

        self.num_residual_streams = num_residual_streams
        self.layer_index = layer_index

        self.static_beta = nn.Parameter(torch.ones(num_residual_streams))

        init_alpha0 = torch.zeros((num_residual_streams, num_input_views))
        init_alpha0[layer_index % num_residual_streams, :] = 1.

        self.static_alpha = nn.Parameter(cat([init_alpha0, torch.eye(num_residual_streams)], dim = 1))

        self.dynamic_alpha_fn = nn.Parameter(torch.zeros(dim, num_residual_streams + num_input_views))
        self.dynamic_alpha_scale = nn.Parameter(torch.ones(()) * 1e-2)

        self.num_input_views = num_input_views

        self.dynamic_beta_fn = nn.Parameter(torch.zeros(dim))
        self.dynamic_beta_scale = nn.Parameter(torch.ones(()) * 1e-2)

    def prepare(self, residuals):

        residuals = rearrange(residuals, '(b s) n d -> b n s d', s = self.num_residual_streams)

        normed = self.norm(residuals)

        wc_weight = self.act(normed @ self.dynamic_alpha_fn)
        dynamic_alpha = wc_weight * self.dynamic_alpha_scale
        alpha = dynamic_alpha + self.static_alpha

        dc_weight = self.act(normed @ self.dynamic_beta_fn)
        dynamic_beta = dc_weight * self.dynamic_beta_scale
        beta = dynamic_beta + self.static_beta

        # width connection

        mix_h = einsum('... s t, ... s d -> ... t d', alpha, residuals)

        views = self.num_input_views

        if views == 1:
            branch_input, residuals = mix_h[..., 0, :], mix_h[..., 1:, :]
        else:
            branch_input, residuals = mix_h[..., :views, :], mix_h[..., views:, :]
            branch_input = rearrange(branch_input, '... v d -> v ... d')

        return branch_input, residuals, dict(beta = beta)

    def forward(self, x, residuals, *, beta):
        residuals = einsum('b n d, b n s -> b n s d', x, beta) + residuals
        return rearrange(residuals, 'b n s d -> (b s) n d')

# LIMe - layer integrated memory (dynamic version)

class DynamicLIMe(Module):
    def __init__(
        self,
        dim,
        num_layers,
        num_views = 1,
        norm = True,
        use_softmax = True
    ):
        super().__init__()
        self.num_layers = num_layers
        self.multiple_views = num_views > 1

        self.to_weights = Sequential(
            RMSNorm(dim) if norm else None,
            nn.Linear(dim, num_views * num_layers),
            Rearrange('... (views layers) -> views ... layers', views = num_views),
            nn.Softmax(dim = -1) if use_softmax else nn.ReLU()
        )

    def forward(
        self,
        x,
        hiddens
    ):

        if not is_tensor(hiddens):
            hiddens = stack(hiddens)

        assert hiddens.shape[0] == self.num_layers, f'expected hiddens to have {self.num_layers} layers but received {tuple(hiddens.shape)} instead (first dimension must be layers)'

        weights = self.to_weights(x)

        out = einsum('l b n d, v b n l -> v b n d', hiddens, weights)

        if self.multiple_views:
            return out

        return rearrange(out, '1 ... -> ...')

# token shifting

def shift(t, amount, mask = None):
    if amount == 0:
        return t

    amount = min(amount, t.shape[1])

    if exists(mask):
        t = t.masked_fill(~mask[..., None], 0.)

    return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.)

class ShiftTokens(Module):
    def __init__(self, shifts, fn):
        super().__init__()
        self.fn = fn
        self.shifts = tuple(shifts)

    def forward(self, x, **kwargs):
        mask = kwargs.get('mask', None)
        shifts = self.shifts
        segments = len(shifts)
        feats_per_shift = x.shape[-1] // segments
        splitted = x.split(feats_per_shift, dim = -1)
        segments_to_shift, rest = splitted[:segments], splitted[segments:]
        segments_to_shift = [shift(*args, mask = mask) for args in zip(segments_to_shift, shifts)]
        x = cat((*segments_to_shift, *rest), dim = -1)
        return self.fn(x, **kwargs)

class FoldAxially(Module):
    def __init__(
        self,
        axial_dim,
        fn: Module
    ):
        super().__init__()
        self.fn = fn
        self.axial_dim = axial_dim # will fold the sequence as rearrange("b (n axial_dim) ... -> (b axial_dim) n ...")

    def forward(
        self,
        x,
        **kwargs
    ):
        if self.axial_dim == 1:
            return self.fn(x, **kwargs)

        seq_len, axial_dim = x.shape[1], self.axial_dim

        next_multiple = math.ceil(seq_len / axial_dim) * axial_dim
        x = pad_at_dim(x, (0, next_multiple - seq_len), dim = 1)

        x = rearrange(x, 'b (n axial_dim) ... -> (b axial_dim) n ...', axial_dim = axial_dim)

        out = self.fn(x, **kwargs)

        (out, *rest_out), tree_spec = tree_flatten(out)

        out = rearrange(out, '(b axial_dim) n ... -> b (n axial_dim) ...', axial_dim = axial_dim)

        out = out[:, :seq_len]
        out = tree_unflatten((out, *rest_out), tree_spec)

        return out

# post branch operator

class LayerScale(Module):
    def __init__(
        self,
        fn: Module,
        dim,
        init_value = 0.,
        unit_offset = False
    ):
        super().__init__()
        self.unit_offset = unit_offset

        self.fn = fn
        self.gamma = nn.Parameter(torch.zeros(dim))
        nn.init.constant_(self.gamma, init_value - float(unit_offset))

    def forward(self, x, **kwargs):
        out = self.fn(x, **kwargs)

        gamma = self.gamma + float(self.unit_offset)

        if isinstance(out, Tensor):
            return out * gamma

        out, *rest = out
        return out * gamma, *rest

class AdaptiveLayerScale(Module):
    def __init__(
        self,
        fn: Module,
        dim,
        dim_condition = None,
        init_bias_value = -2.
    ):
        super().__init__()
        self.fn = fn

        dim_condition = default(dim_condition, dim)
        self.to_gamma = nn.Linear(dim_condition, dim)

        nn.init.zeros_(self.to_gamma.weight)
        nn.init.constant_(self.to_gamma.bias, init_bias_value)

    def forward(self, x, *, condition, **kwargs):
        if condition.ndim == 2:
            condition = rearrange(condition, 'b d -> b 1 d')

        out = self.fn(x, **kwargs)
        gamma = self.to_gamma(condition).sigmoid()

        if isinstance(out, Tensor):
            return out * gamma

        out, *rest = out
        return out * gamma, *rest

# skip connection combining

class ConcatCombine(Module):
    def __init__(self, dim, prev_layer_ind):
        super().__init__()
        self.prev_layer_ind = prev_layer_ind
        self.combine = LinearNoBias(dim * 2, dim)

    def forward(self, x, prev_layers: list[Tensor]):
        skip = prev_layers[self.prev_layer_ind]
        concatted_skip = cat((skip, x), dim = -1)
        return self.combine(concatted_skip)

# feedforward

class GLU(Module):
    def __init__(
        self,
        dim_in,
        dim_out,
        activation: Callable,
        mult_bias = False
    ):
        super().__init__()
        self.act = activation
        self.proj = nn.Linear(dim_in, dim_out * 2)
        self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1.

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim = -1)
        return x * self.act(gate) * self.mult_bias

class FeedForward(Module):
    def __init__(
        self,
        dim,
        dim_out = None,
        mult = 4,
        glu = False,
        glu_mult_bias = False,
        swish = False,
        relu_squared = False,
        custom_activation = None,
        post_act_ln = False,
        dropout = 0.,
        sublayer_dropout = 0.,
        no_bias = False,
        zero_init_output = False
    ):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)

        if exists(custom_activation):
            activation = deepcopy(custom_activation)
        elif relu_squared:
            activation = ReluSquared()
        elif swish:
            activation = nn.SiLU()
        else:
            activation = nn.GELU()

        if glu:
            project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias)
        else:
            project_in = nn.Sequential(
                nn.Linear(dim, inner_dim, bias = not no_bias),
                activation
            )

        self.ff = Sequential(
            project_in,
            LayerNorm(inner_dim) if post_act_ln else None,
            nn.Dropout(dropout),
            nn.Linear(inner_dim, dim_out, bias = not no_bias),
            nn.Dropout(sublayer_dropout) if sublayer_dropout > 0. else None
        )

        # init last linear layer to 0
        if zero_init_output:
            init_zero_(self.ff[-1])

    def forward(self, x):
        return self.ff(x)

# attention. it is all we need

class Attention(Module):
    def __init__(
        self,
        dim,
        dim_head = DEFAULT_DIM_HEAD,
        dim_context = None,
        heads = 8,
        causal = False,
        flash = False,
        pre_talking_heads = False,
        post_talking_heads = False,
        pre_scale_post_talking_heads = False,
        head_scale = False,
        sparse_topk = None,
        sparse_topk_straight_through = False,
        num_mem_kv = 0,
        dropout = 0.,
        sublayer_dropout = 0.,
        on_attn = False,
        gate_value_heads = False,
        swiglu_values = False,
        gate_values = False,
        zero_init_output = False,
        hard = False,
        max_attend_past = None,
        qk_norm = False,
        qk_norm_groups = 1,
        qk_norm_scale = 10,
        qk_norm_dim_scale = False,
        l2_distance = False,
        sigmoid = False,
        selective = False,
        custom_attn_fn: Callable | None = None,
        hybrid_module: Module | None = None,
        hybrid_mask_kwarg: str | None = None,
        hybrid_fold_axial_dim: int | None = None,
        hybrid_learned_mix = False,
        one_kv_head = False,
        kv_heads = None,
        value_dim_head = None,
        dim_out = None,
        add_zero_kv = False,         # same as add_zero_attn in pytorch
        rotate_num_heads = None,
        data_dependent_alibi = False,
        data_dependent_alibi_per_row = False,
        data_dependent_alibi_per_row_dim_head = 8,
        data_dependent_alibi_kwargs: dict = dict(),
        use_cope = False,
        cope_max_pos = 16,
        cope_soft_onehot_pos = False,
        cope_talking_heads = False,
        softclamp_logits = False,
        logit_softclamp_value = 50.,
        learned_value_residual_mix = False,
        laser = False,                # https://arxiv.org/abs/2411.03493v1
        laser_softclamp_value = 15.,
        qkv_receive_diff_residuals = False,
        use_latent_q = False,
        dim_latent_q = None,
        use_latent_kv = False,
        dim_latent_kv = None,
        latent_rope_subheads = None,
        onnxable = False,
        attend_sdp_kwargs: dict = dict(
            enable_flash = True,
            enable_math = True,
            enable_mem_efficient = True
        )
    ):
        super().__init__()
        dim_kv = default(dim_context, dim)

        self.scale = dim_head ** -0.5

        self.heads = heads
        self.causal = causal
        self.max_attend_past = max_attend_past

        assert not (exists(kv_heads) and one_kv_head), 'either attn_one_kv_head is set to True (in which case kv_heads is set to 1), or attn_kv_heads is set, but not both'

        value_dim_head = default(value_dim_head, dim_head)
        kv_heads = default(kv_heads, heads)

        kv_heads = 1 if one_kv_head else kv_heads
        assert divisible_by(heads, kv_heads)

        self.kv_heads = kv_heads

        q_dim = dim_head * heads
        k_dim = dim_head * kv_heads
        v_dim = value_dim_head * kv_heads
        out_dim = value_dim_head * heads

        # determine input dimensions to qkv based on whether intermediate latent q and kv are being used
        # for eventually supporting multi-latent attention (MLA)

        self.to_latent_q = None
        self.to_latent_kv = None
        self.to_rotateable_k = None # for their "decoupled rope", subheads of keys that comes directly from base sequence (does not go through latents)

        dim_q_input = dim
        dim_kv_input = dim_kv

        if use_latent_q:
            assert exists(dim_latent_q)
            self.to_latent_q = LinearNoBias(dim, dim_latent_q)
            dim_q_input = dim_latent_q

        if use_latent_kv:
            assert exists(dim_latent_kv)
            self.to_latent_kv = LinearNoBias(dim, dim_latent_kv)
            dim_kv_input = dim_latent_kv

        if exists(latent_rope_subheads):
            assert not exists(rotate_num_heads), '`rotate_num_heads` cannot be set when multi-latent attention is being used'
            rotate_num_heads = latent_rope_subheads

            k_dim = dim_head * (kv_heads - latent_rope_subheads)

            self.to_rotateable_k = LinearNoBias(dim, dim_head * latent_rope_subheads)
            self.split_rotateable_k_heads = Rearrange('b n (h d) -> b h n d', h = latent_rope_subheads)

        self.use_latent_q = use_latent_q
        self.use_latent_kv = use_latent_kv

        # query key projection

        self.to_q = LinearNoBias(dim_q_input, q_dim)
        self.to_k = LinearNoBias(dim_kv_input, k_dim)
        self.to_v = LinearNoBias(dim_kv_input, v_dim)

        # split and merge of attention heads

        self.split_q_heads = Rearrange('b n (h d) -> b h n d', h = heads)
        self.split_k_heads = Rearrange('b n (h d) -> b h n d', d = dim_head)
        self.split_v_heads = Rearrange('b n (h d) -> b h n d', d = value_dim_head)

        self.merge_heads = Rearrange('b h n d -> b n (h d)')

        # whether qkv receives different residual stream combinations from hyper connections or lime

        self.qkv_receive_diff_residuals = qkv_receive_diff_residuals

        # enhancing gradients to attention through exponentiated values

        self.laser = laser
        self.laser_softclamp_value = laser_softclamp_value

        # add GLU gating for aggregated values, from alphafold2

        self.to_v_gate = None
        if gate_values:
            self.to_v_gate = nn.Linear(dim, out_dim)
            self.to_v_gate_activation = F.silu if swiglu_values else F.sigmoid
            nn.init.constant_(self.to_v_gate.weight, 0)
            nn.init.constant_(self.to_v_gate.bias, 10)

        # add per head gating of the output values, from 'Attend to nothing' paper

        self.to_v_head_gate = None
        if gate_value_heads:
            self.to_v_head_gate = nn.Linear(dim, heads)
            nn.init.constant_(self.to_v_head_gate.weight, 0)
            nn.init.constant_(self.to_v_head_gate.bias, 10)

        # cosine sim attention

        self.qk_norm = qk_norm
        self.qk_norm_groups = qk_norm_groups
        self.qk_norm_scale = qk_norm_scale

        # whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442

        self.qk_norm_dim_scale = qk_norm_dim_scale

        self.qk_norm_q_scale = self.qk_norm_k_scale = 1
        if qk_norm and qk_norm_dim_scale:
            self.qk_norm_q_scale = nn.Parameter(torch.ones(heads, 1, dim_head))
            self.qk_norm_k_scale = nn.Parameter(torch.ones(kv_heads, 1, dim_head))

        assert (not qk_norm) or divisible_by(dim_head, qk_norm_groups), 'dimension per attention head must be divisible by the qk norm groups'
        assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)'

        # contextual positional encoding
        # https://arxiv.org/html/2405.18719v2

        cope = None

        if use_cope:
            assert causal, 'CoPE was designed for causal attention'
            assert not flash, 'CoPE is not flash attention compatible'

            cope = CoPE(
                dim = dim_head,
                heads = heads,
                max_pos = cope_max_pos,
                talking_heads = cope_talking_heads,
                soft_onehot = cope_soft_onehot_pos
            )

        # data dependent alibi
        # https://openreview.net/forum?id=q2Lnyegkr8

        self.data_dependent_alibi = None

        if data_dependent_alibi:

            dda_klass = DataDependentAlibi if not data_dependent_alibi_per_row else PerRowDataDependentAlibi
            dda_kwargs = dict(dim = dim, heads = heads, causal = causal)

            if data_dependent_alibi_per_row:
                dda_kwargs.update(dim_head = data_dependent_alibi_per_row_dim_head)

            self.data_dependent_alibi = dda_klass(**dda_kwargs, **data_dependent_alibi_kwargs)

        # attend class - includes core attention algorithm + talking heads

        self.attend = Attend(
            heads = heads,
            causal = causal,
            pre_talking_heads = pre_talking_heads,
            post_talking_heads = post_talking_heads,
            pre_scale_post_talking_heads = pre_scale_post_talking_heads,
            dropout = dropout,
            sparse_topk = sparse_topk,
            sparse_topk_straight_through = sparse_topk_straight_through,
            hard = hard,
            qk_norm = qk_norm,
            scale = qk_norm_scale if qk_norm else self.scale,
            l2_distance = l2_distance,
            sigmoid = sigmoid,
            selective = selective,
            custom_attn_fn = custom_attn_fn,
            add_zero_kv = add_zero_kv,
            flash = flash,
            softclamp_logits = softclamp_logits,
            logit_softclamp_value = logit_softclamp_value,
            cope = cope,
            onnxable = onnxable,
            sdp_kwargs = attend_sdp_kwargs
        )

        # head scaling

        self.head_scale = head_scale
        if head_scale:
            self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1))

        # explicit topk sparse attention

        self.sparse_topk = sparse_topk

        # add memory key / values

        self.num_mem_kv = num_mem_kv
        if num_mem_kv > 0:
            self.mem_k = nn.Parameter(torch.randn(kv_heads, num_mem_kv, dim_head))
            self.mem_v = nn.Parameter(torch.randn(kv_heads, num_mem_kv, dim_head))

        # maybe learned value residual mixer per token

        self.to_value_residual_mix = nn.Sequential(
            nn.Linear(dim, heads),
            nn.Sigmoid(),
            Rearrange('b n h -> b h n 1')
         ) if learned_value_residual_mix else always(0.5)

        # attention on attention

        self.attn_on_attn = on_attn

        # hybrid module, in same vein as hymba https://www.arxiv.org/abs/2411.13676

        hybrid_mix = None
        hybrid_norms = None
        hybrid_module = maybe(deepcopy)(hybrid_module)

        if exists(hybrid_module) and exists(hybrid_fold_axial_dim):
            hybrid_module = FoldAxially(axial_dim = hybrid_fold_axial_dim, fn = hybrid_module)
            hybrid_mix = LinearNoBias(dim, heads) if hybrid_learned_mix else None

            hybrid_norms = ModuleList([
                MultiheadRMSNorm(dim_head, heads = heads),
                MultiheadRMSNorm(dim_head, heads = heads)
            ])

        self.hybrid_module = hybrid_module
        self.hybrid_norms = hybrid_norms
        self.hybrid_mix = hybrid_mix
        self.hybrid_mask_kwarg = hybrid_mask_kwarg # for bidirectional, can forward `mask` into the hybrid module and let it handle variable lengths

        # output dimension by default same as input, but can be overridden

        dim_out = default(dim_out, dim)
        self.to_out = nn.Sequential(LinearNoBias(out_dim, dim_out * 2), nn.GLU()) if on_attn else LinearNoBias(out_dim, dim_out)

        # sublayer dropout

        self.sublayer_dropout = nn.Dropout(sublayer_dropout) if sublayer_dropout > 0. else None

        # the number of attention heads to rotate, for decoupled rope in multi-latent attention

        rotate_num_heads = default(rotate_num_heads, heads)

        assert 0 < rotate_num_heads <= heads
        is_partial_rotate_heads = rotate_num_heads < heads
        assert not (is_partial_rotate_heads and kv_heads < heads), 'grouped query attention not compatible with partial rotate heads (decoupled rope for multi-latent attention), yet'

        self.rotate_num_heads = rotate_num_heads

        # whether parent can kv cache

        self.can_cache_kv = not selective

        # init output projection 0

        if zero_init_output:
            init_zero_(self.to_out)

    def forward(
        self,
        x,
        context = None,
        mask = None,
        context_mask = None,
        attn_mask = None,
        rel_pos = None,
        attn_bias = None,
        rotary_pos_emb = None,
        context_rotary_pos_emb = None,
        pos = None, # for custom alibi positions
        prev_attn = None,
        mem = None,
        mem_mask = None,
        return_intermediates = False,
        cache: Intermediates | None = None,
        value_residual = None
    ):
        b, n, h, kv_h, head_scale, num_mem_kv, device, has_context, qkv_receive_diff_residuals, is_multi_latent_attn = x.shape[0], x.shape[1], self.heads, self.kv_heads, self.head_scale, self.num_mem_kv, x.device, exists(context), self.qkv_receive_diff_residuals, self.use_latent_kv

        # an interesting possibility with hyper connections
        # having queries, keys, values be routed from different layers

        assert not (qkv_receive_diff_residuals and has_context), 'qkv receiving different sequences can only be used for self attention'

        if qkv_receive_diff_residuals:
            assert x.ndim == 4 and x.shape[0] == 3

            q_input, k_input, v_input = x
        else:
            kv_input = default(context, x)
            q_input, k_input, v_input = x, kv_input, kv_input

        if exists(mem):
            k_input, mem_packed_shape = pack([mem, k_input], 'b * d')
            v_input, _ = pack([mem, v_input], 'b * d')

        # multi-latent attention logic
        # https://arxiv.org/abs/2405.04434 - Deepseek-AI team

        k_sub_heads = None # the rotateable subheads of keys derived from base sequence

        if self.use_latent_q:
            q_input = self.to_latent_q(q_input)

        if is_multi_latent_attn:
            assert not qkv_receive_diff_residuals
            needs_k_sub_heads = exists(self.to_rotateable_k)

            latent_kv_input = self.to_latent_kv(k_input)

            if needs_k_sub_heads:
                rotateable_k = self.to_rotateable_k(k_input)
                k_sub_heads = self.split_rotateable_k_heads(rotateable_k)

            if exists(cache):
                cached_latent_kv, maybe_cached_k_sub_heads = cache.cached_kv
                latent_kv_input = cat((cached_latent_kv, latent_kv_input), dim = -2)

                if exists(maybe_cached_k_sub_heads):
                    k_sub_heads = cat((maybe_cached_k_sub_heads, k_sub_heads), dim = -2)

            if return_intermediates:
                cached_kv = (latent_kv_input, k_sub_heads)

            k_input = v_input = latent_kv_input

        # query, key, value projection

        q = self.to_q(q_input)
        k = self.to_k(k_input)
        v = self.to_v(v_input)

        q = self.split_q_heads(q)
        k = self.split_k_heads(k)
        v = self.split_v_heads(v)

        # take care of decoupled rope from multi-latent attention

        if exists(k_sub_heads):
            k = cat((k, k_sub_heads), dim = 1)

        # if previous values passed in for residual, either invoke resformer

        orig_values = v

        # https://arxiv.org/abs/2410.17897v1

        if exists(value_residual):
            value_residual_mix = self.to_value_residual_mix(q_input)
            v = value_residual.lerp(v, value_residual_mix)

        # qk normalization

        if self.qk_norm:
            qk_l2norm = partial(l2norm, groups = self.qk_norm_groups)
            q, k = map(qk_l2norm, (q, k))
            scale = self.qk_norm_scale

            q = q * self.qk_norm_q_scale
            k = k * self.qk_norm_k_scale

        # take care of caching

        if not is_multi_latent_attn:
            if exists(cache):
                ck, cv = cache.cached_kv

                if exists(mem):
                    mk, k = unpack(k, mem_packed_shape, 'b h * d')
                    mv, v = unpack(v, mem_packed_shape, 'b h * d')

                k = cat((ck, k), dim = -2)
                v = cat((cv, v), dim = -2)

                if exists(mem):
                    k = cat((mk, k), dim = -2)
                    v = cat((mv, v), dim = -2)

            if return_intermediates:
                mem_len = mem.shape[-2] if exists(mem) else 0
                cached_kv = (k[..., mem_len:, :], v[..., mem_len:, :])

        if exists(rotary_pos_emb):
            rotate_num_heads = self.rotate_num_heads
            partial_rotate_heads = rotate_num_heads < h

            freqs, xpos_scale = rotary_pos_emb
            q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.)

            if partial_rotate_heads:
                q_rest, q = q[:, :-rotate_num_heads], q[:, -rotate_num_heads:]
                k_rest, k = k[:, :-rotate_num_heads], k[:, -rotate_num_heads:]

            q = apply_rotary_pos_emb(q, freqs, q_xpos_scale)

            if has_context:
                # override with `context_rotary_pos_emb` if provided

                freqs, xpos_scale = context_rotary_pos_emb
                _, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.)

            k = apply_rotary_pos_emb(k, freqs, k_xpos_scale)

            if partial_rotate_heads:
                q = cat((q_rest, q), dim = 1)
                k = cat((k_rest, k), dim = 1)

        input_mask = context_mask

        if not exists(input_mask) and not has_context:
            input_mask = mask

            if (exists(input_mask) or exists(mem_mask)) and exists(mem):
                seq_len, mem_len = n, mem.shape[-2]

                if not exists(mem_mask):
                    input_mask = pad_at_dim(input_mask, (mem_len, 0), dim = -1, value = True)
                elif not exists(input_mask):
                    input_mask = pad_at_dim(mem_mask, (0, seq_len), dim = -1, value = True)
                else:
                    input_mask = cat((mem_mask, input_mask), dim = -1)

        # i, j determined for relative positional bias, excluding memory key / values

        i, j = tuple(t.shape[-2] for t in (q, k))

        # maybe append memory key / values

        if num_mem_kv > 0:
            mem_k, mem_v = tuple(repeat(t, 'h n d -> b h n d', b = b) for t in (self.mem_k, self.mem_v))

            if self.qk_norm:
                mem_k = l2norm(mem_k)
                mem_k = mem_k * self.qk_norm_k_scale

            k = cat((mem_k, k), dim = -2)
            v = cat((mem_v, v), dim = -2)

            if exists(input_mask):
                input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True)

        # determine masking

        mask_value = max_neg_value(q)
        masks = []
        final_attn_mask = None

        if exists(input_mask):
            input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
            masks.append(~input_mask)

        if exists(attn_mask):
            assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4'
            if attn_mask.ndim == 2:
                attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j')
            elif attn_mask.ndim == 3:
                attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j')
            masks.append(~attn_mask)

        if exists(self.max_attend_past):
            range_q = arange(j - i, j, device = device)
            range_k = arange(j, device = device)
            dist = einx.subtract('i, j -> 1 1 i j', range_q, range_k)
            max_attend_past_mask = dist > self.max_attend_past
            max_attend_past_mask = pad_at_dim(max_attend_past_mask, (num_mem_kv, 0), value = False, dim = -1) # handle memory key / values
            masks.append(max_attend_past_mask)

        if len(masks) > 0:
            final_attn_mask = ~or_reduce(masks)

        # prepare relative positional bias, if needed

        if exists(rel_pos):
            assert not exists(attn_bias)

            if exists(pos):
                assert isinstance(rel_pos, AlibiPositionalBias), 'only alibi allowed for custom positions at the moment'
                # allow for custom positions to be passed in
                attn_bias = rel_pos.forward_custom_pos(pos)
            else:
                attn_bias = rel_pos(i, j)

            attn_bias = pad_at_dim(attn_bias, (num_mem_kv, 0)) # handle memory key / values

        # prepare data dependent alibi from forgetting transformers paper, if needed

        if exists(self.data_dependent_alibi):
            attn_bias = self.data_dependent_alibi(x)

            attn_bias = pad_at_dim(attn_bias, (num_mem_kv, 0))

        if self.laser:
            v = softclamp(v, self.laser_softclamp_value)
            v = v.exp()

        # attention is all we need

        out, intermediates = self.attend(
            q, k, v,
            mask = final_attn_mask,
            attn_bias = attn_bias,
            prev_attn = prev_attn
        )

        # laser

        if self.laser:
            out = log(out)

        # store the values for resformer

        intermediates.values = orig_values

        # normformer scaling of heads

        if head_scale:
            out = out * self.head_scale_params

        # per head gating, from https://arxiv.org/abs/2306.12929

        if exists(self.to_v_head_gate):
            head_gate = self.to_v_head_gate(x)
            out = einx.multiply('b n h, b h n d ->b h n d', head_gate.sigmoid(), out)

        # if exists hybrid module, must do a normalization

         # hybrid module

        if exists(self.hybrid_module):

            # hybrid input

            hybrid_forward_kwargs = dict()

            if not self.causal and exists(self.hybrid_mask_kwarg):
                hybrid_forward_kwargs = {self.hybrid_mask_kwarg: mask}

            # hybrid forward

            hybrid_outputs = self.hybrid_module(x, **hybrid_forward_kwargs)

            # handle hybrid out

            (hybrid_out, *rest_hybrid_outs), _ = tree_flatten(hybrid_outputs)

            # handle variable hybrid output and multi rmsnorm before summing to main attention output (also normed)

            if hybrid_out.ndim == 3:
                hybrid_out = rearrange(hybrid_out, 'b n (h d) -> b h n d', h = h)

            out_norm, hybrid_out_norm = self.hybrid_norms

            out = out_norm(out)
            hybrid_out = hybrid_out_norm(hybrid_out)

            if exists(self.hybrid_mix):
                mix = self.hybrid_mix(x)
                mix = rearrange(mix, 'b n h -> b h n 1')
                out = out.lerp(hybrid_out, mix.sigmoid())
            else:
                out = 0.5 * (out + hybrid_out)

        # merge heads

        out = self.merge_heads(out)

        # alphafold2 styled gating of the values

        if exists(self.to_v_gate):
            gates = self.to_v_gate(x)
            out = out * self.to_v_gate_activation(gates)

        # combine the heads

        out = self.to_out(out)

        # maybe sublayer dropout

        out = maybe(self.sublayer_dropout)(out)

        if exists(mask):
            out = einx.where('b n, b n d, -> b n d', mask, out, 0.)

        if not return_intermediates:
            return out

        intermediates.cached_kv = cached_kv

        return out, intermediates

class AttentionLayers(Module):
    def __init__(
        self,
        dim,
        depth = None,
        heads = 8,
        causal = False,
        cross_attend = False,
        only_cross = False,
        use_scalenorm = False,
        use_rmsnorm = False,
        use_dynamic_tanh = False,
        dynamic_tanh_init_alpha = 1.,
        use_simple_rmsnorm = False,
        use_adaptive_layernorm = False,
        use_adaptive_rmsnorm = False,
        use_adaptive_layerscale = False, # paired with use_adaptive_layernorm for ada-ln-zero from DiT paper
        norm_add_unit_offset = True,
        dim_condition = None,
        adaptive_condition_mlp = False,
        adaptive_condition_mlp_expansion = 4,
        alibi_pos_bias = False,
        alibi_num_heads = None,
        rel_pos_bias = False,
        rel_pos_num_buckets = 32,
        rel_pos_max_distance = 128,
        dynamic_pos_bias = False,
        dynamic_pos_bias_log_distance = False,
        dynamic_pos_bias_mlp_depth = 2,
        dynamic_pos_bias_norm = False,
        rotary_pos_emb = False,
        rotary_emb_dim = None,
        rotary_xpos = False,
        rotary_interpolation_factor = 1.,
        rotary_xpos_scale_base = 512,
        rotary_base_rescale_factor = 1.,
        rotate_num_heads = None,
        weight_tie_layers = False,
        custom_layers: tuple[str, ...] | None = None,
        layers_execute_order: tuple[int, ...] | None = None,
        sandwich_coef = None,
        par_ratio = None,
        residual_attn = False,
        cross_residual_attn = False,
        macaron = False,
        pre_norm = True,
        pre_norm_has_final_norm = True,
        gate_residual = False,
        scale_residual = False,
        scale_residual_constant = 1.,
        shift_tokens = 0,
        sandwich_norm = False,
        softclamp_output = False,
        softclamp_output_value = 30.,
        zero_init_branch_output = False,
        layer_dropout = 0.,
        cross_attn_tokens_dropout = 0.,
        disable_abs_pos_emb = None,
        use_layerscale = False,
        layerscale_init_value = 0.,
        unet_skips = False,
        integrate_layers = False,
        layer_integrate_use_softmax = True,
        num_residual_streams = 1,
        qkv_receive_diff_residuals = False,
        reinject_input = False,              # seen first in DEQ paper https://arxiv.org/abs/1909.01377, but later used in a number of papers trying to achieve depthwise generalization https://arxiv.org/abs/2410.03020v1
        learned_reinject_input_gate = False,
        add_value_residual = False,          # resformer from Zhou et al - https://arxiv.org/abs/2410.17897v1 - further corroboration by https://arxiv.org/abs/2412.15113 (faster emergence of ICL) - looks like this setting may becoming a necessity for every transformer soon
        learned_value_residual_mix = True,   # seeing big improvements when the value residual mix value is learned per token - credit goes to @faresobeid for taking the first step with learned scalar mix, then @Blinkdl for taking it a step further with data dependent. here we will use per token learned
        rel_pos_kwargs: dict = dict(),
        residual_fn_kwargs: dict = dict(),
        **kwargs
    ):
        super().__init__()
        rotary_pos_emb = rotary_pos_emb or rotary_xpos

        ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
        attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs)
        cross_attn_kwargs, kwargs = groupby_prefix_and_trim('cross_attn_', kwargs)

        dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
        data_dependent_alibi = attn_kwargs.get('data_dependent_alibi', False)

        assert len(kwargs) == 0, f'unrecognized kwargs passed in {kwargs.keys()}'

        self.dim = dim
        self.causal = causal
        self.layers = ModuleList([])

        # routing related
        # 1. greater than one residual stream, proposed in Hyper-Connections paper https://arxiv.org/abs/2409.19606
        # 2. integrating more than one past layer, from LIMe paper https://arxiv.org/abs/2502.09245

        qkv_receive_diff_residuals |= integrate_layers # qkv always receives different views if integrating layers

        # hyper connections

        assert num_residual_streams > 0
        has_hyper_connections = num_residual_streams > 1

        self.num_residual_streams = num_residual_streams
        self.stream_emb = nn.Parameter(torch.zeros(num_residual_streams, dim)) if num_residual_streams > 1 else None

        assert not (has_hyper_connections and gate_residual)

        hyper_conn_produce_diff_views = qkv_receive_diff_residuals and not integrate_layers

        # LIMe

        hiddens_counter = 0
        self.layer_integrators = ModuleList([])

        assert not (qkv_receive_diff_residuals and not (hyper_conn_produce_diff_views or integrate_layers))

        # positions related

        self.disable_abs_pos_emb = default(disable_abs_pos_emb, (rel_pos_bias or rotary_pos_emb))

        rotary_emb_dim = default(rotary_emb_dim, dim_head // 2)

        assert rotary_emb_dim <= dim_head, f'rotary emb dim {rotary_emb_dim} must be less than or equal to attention head dimension {dim_head}'

        if rotary_emb_dim < 32:
            logger.warning('when training language model, rotary embedding dimension should be at least 32')

        assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention'
        self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None

        assert at_most_one_of(alibi_pos_bias, rel_pos_bias, data_dependent_alibi), 'you can only choose one of Alibi positional bias, data dependent Alibi (forgetting transformers), dynamic tanh, or T5 relative positional bias'
        assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'

        # relative positional bias

        flash_attn = attn_kwargs.get('flash', False)
        assert at_most_one_of(rel_pos_bias, dynamic_pos_bias, alibi_pos_bias), 'you can only choose up to one of t5, alibi, or dynamic positional bias'

        self.rel_pos = None

        if rel_pos_bias:
            assert not flash_attn, 'flash attention not compatible with t5 relative positional bias'
            self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance, **rel_pos_kwargs)
        elif dynamic_pos_bias:
            assert not flash_attn, 'flash attention not compatible with dynamic positional bias'
            self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm, **rel_pos_kwargs)
        elif alibi_pos_bias:
            alibi_num_heads = default(alibi_num_heads, heads)
            assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads'
            self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads, **rel_pos_kwargs)

        assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm'

        self.pre_norm = pre_norm
        self.sandwich_norm = sandwich_norm

        self.residual_attn = residual_attn
        self.cross_residual_attn = cross_residual_attn
        assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention'

        self.cross_attend = cross_attend

        # determine norm

        assert at_most_one_of(use_scalenorm, use_rmsnorm, use_dynamic_tanh, use_simple_rmsnorm, use_adaptive_layernorm, use_adaptive_rmsnorm), 'you can only use either scalenorm, rmsnorm, adaptive layernorm, adaptive rmsnorm, or simple rmsnorm'

        norm_need_condition = False
        dim_condition = default(dim_condition, dim)
        dim_condition_mult = 1

        if adaptive_condition_mlp:
            dim_condition_mult = adaptive_condition_mlp_expansion

        if use_scalenorm:
            norm_class = ScaleNorm
        elif use_rmsnorm:
            norm_class = RMSNorm
        elif use_simple_rmsnorm:
            norm_class = SimpleRMSNorm
        elif use_dynamic_tanh:
            assert pre_norm, 'dynamic tanh norm only tested for pre-norm'
            norm_class = partial(DynamicTanh, init_alpha = dynamic_tanh_init_alpha)
        elif use_adaptive_layernorm:
            norm_need_condition = True
            norm_class = partial(AdaptiveLayerNorm, dim_condition = dim_condition * dim_condition_mult)
        elif use_adaptive_rmsnorm:
            norm_need_condition = True
            norm_class = partial(AdaptiveRMSNorm, dim_condition = dim_condition * dim_condition_mult)
        else:
            norm_class = LayerNorm

        norm_fn = partial(norm_class, dim)

        if not norm_need_condition and norm_add_unit_offset:
            # researcher Ohad Rubin shares in a blog post by adding an offset to gammas, they can be subjected to weight decay safely
            norm_fn = partial(norm_fn, unit_offset = True)

        self.norm_need_condition = norm_need_condition
        self.dim_condition = dim_condition

        # determine default block layer type order

        if cross_attend and not only_cross:
            default_block = ('a', 'c', 'f')
        elif cross_attend and only_cross:
            default_block = ('c', 'f')
        else:
            default_block = ('a', 'f')

        if macaron:
            default_block = ('f',) + default_block

        # determine post branch wrapper

        assert at_most_one_of(use_layerscale, use_adaptive_layerscale)

        post_branch_fn = None
        post_branch_fn_needs_condition = False

        if use_layerscale:
            post_branch_fn = partial(LayerScale, dim = dim, init_value = layerscale_init_value)
        elif use_adaptive_layerscale:
            post_branch_fn = partial(AdaptiveLayerScale, dim = dim, dim_condition = dim_condition * dim_condition_mult)
            post_branch_fn_needs_condition = True

        self.post_branch_fn_needs_condition = post_branch_fn_needs_condition

        if exists(post_branch_fn) and not post_branch_fn_needs_condition and norm_add_unit_offset:
            post_branch_fn = partial(post_branch_fn, unit_offset = True)

        # setup mlp for conditioning

        self.need_condition = norm_need_condition or post_branch_fn_needs_condition

        self.adaptive_mlp = nn.Identity()

        if self.need_condition and adaptive_condition_mlp:
            self.adaptive_mlp = nn.Sequential(
                LinearNoBias(dim_condition, dim_condition * dim_condition_mult),
                nn.SiLU()
            )

        # zero init

        if zero_init_branch_output:
            attn_kwargs = {**attn_kwargs, 'zero_init_output':  True}
            ff_kwargs = {**ff_kwargs, 'zero_init_output':  True}

        # setup weight tying, which is a special case of `layer_execute_order`

        assert not (exists(layers_execute_order) and exists(custom_layers) and exists(depth)), 'depth should not be passed in if using custom layers and custom layer execution order'

        assert not (weight_tie_layers and any([*map(exists, (custom_layers, par_ratio, sandwich_coef))]))

        if weight_tie_layers:
            assert exists(depth), 'depth must be passed in with `weight_tie_layers` = True'
            assert not exists(layers_execute_order)
            layers_execute_order = tuple(range(len(default_block))) * depth
            depth = 1

        # calculate layer block order

        len_default_block = 1

        if exists(custom_layers):
            layer_types = custom_layers
        elif exists(par_ratio):
            par_depth = depth * len(default_block)
            assert 1 < par_ratio <= par_depth, 'par ratio out of range'
            default_block = tuple(filter(not_equals('f'), default_block))
            par_attn  = par_depth // par_ratio
            depth_cut = par_depth * 2 // 3  # 2 / 3 attention layer cutoff suggested by PAR paper
            par_width = (depth_cut + depth_cut // par_attn) // par_attn
            assert len(default_block) <= par_width, 'default block is too large for par_ratio'
            par_block = default_block + ('f',) * (par_width - len(default_block))
            par_head = par_block * par_attn
            layer_types = par_head + ('f',) * (par_depth - len(par_head))
        elif exists(sandwich_coef):
            assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
            layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
        else:
            assert exists(depth), '`depth` must be passed in for `Decoder` or `Encoder`'
            layer_types = default_block * depth
            len_default_block = len(default_block)

        self.layer_types = layer_types
        self.layers_execute_order = default(layers_execute_order, tuple(range(len(layer_types))))

        assert all([i < len(self.layer_types) for i in self.layers_execute_order])

        self.num_attn_layers = len(list(filter(equals('a'), layer_types)))

        # set the depth

        depth = default(depth, len(self.layers_execute_order))
        self.depth = depth

        # stochastic depth

        self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types))

        # structured dropout for cross attending

        self.cross_attn_tokens_dropout = cross_attn_tokens_dropout

        # calculate token shifting

        shift_tokens = cast_tuple(shift_tokens, len(layer_types))

        # optional soft clamping just before the final norm
        # used in gemma 2

        self.softclamp_output = softclamp_output
        self.softclamp_output_value = softclamp_output_value

        # whether it has post norm

        self.final_norm = norm_fn() if pre_norm else nn.Identity()

        # whether unet or not

        self.unet_skips = unet_skips
        num_skips = self.depth // len_default_block

        assert not (unet_skips and num_skips == 0), 'must have depth of at least 2 for unet skip connections'

        skip_indices = [i * len_default_block for i in range(num_skips)]

        self.skip_combines = ModuleList([])

        # whether there is reinjection of input at every layer

        self.reinject_input = reinject_input
        self.reinject_input_proj = nn.Linear(dim, dim, bias = False) if reinject_input else None
        self.learned_reinject_input_gate = nn.Linear(dim, 1, bias = False) if learned_reinject_input_gate else None

        # add the value from the first self attention block to all latter projected self attention values as a residual

        self.add_value_residual = add_value_residual

        is_first_self_attn = True
        is_first_cross_attn = True
        learned_value_residual_mix &= add_value_residual

        # iterate and construct layers

        for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)):

            # `ind` is the index of each module - attention, feedforward, cross attention
            # but `block_ind` refers to the typical enumeration of a transformer block (attn + ff + [optional] cross attn)

            block_begin = divisible_by(ind, len_default_block)
            block_ind = ind // len_default_block

            is_last_layer = ind == (len(self.layer_types) - 1)

            # attention, cross attention, feedforward

            layer_qkv_receives_diff_view = layer_type == 'a' and qkv_receive_diff_residuals and not (is_first_self_attn and integrate_layers)

            if layer_type == 'a':
                self_attn_learned_value_residual = learned_value_residual_mix and not is_first_self_attn

                layer = Attention(dim, heads = heads, causal = causal, qkv_receive_diff_residuals = layer_qkv_receives_diff_view, learned_value_residual_mix = self_attn_learned_value_residual, rotate_num_heads = rotate_num_heads, **attn_kwargs)
                is_first_self_attn = False

            elif layer_type == 'c':
                layer = Attention(dim, heads = heads, **{**attn_kwargs, **cross_attn_kwargs})
                is_first_cross_attn = False

            elif layer_type == 'f':
                layer = FeedForward(dim, **ff_kwargs)
                layer = layer if not macaron else Scale(0.5, layer)

            else:
                raise Exception(f'invalid layer type {layer_type}')

            if layer_shift_tokens > 0:
                shift_range_upper = layer_shift_tokens + 1
                shift_range_lower = -layer_shift_tokens if not causal else 0
                layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer)

            if exists(post_branch_fn):
                layer = post_branch_fn(layer)

            layer_integrate = None

            if integrate_layers:
                num_layer_hiddens = ind + 1
                layer_integrate_num_view = 3 if layer_qkv_receives_diff_view else 1

                layer_integrate = DynamicLIMe(dim, num_layer_hiddens, num_views = layer_integrate_num_view, use_softmax = layer_integrate_use_softmax)

            if has_hyper_connections:
                residual_fn = partial(HyperConnection, num_residual_streams = num_residual_streams)

                if layer_type == 'a' and hyper_conn_produce_diff_views:
                    residual_fn = partial(residual_fn, num_input_views = 3)

            elif gate_residual:
                residual_fn = GRUGating
            else:
                residual_fn = Residual

            residual = residual_fn(dim, layer_index = ind, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant, **residual_fn_kwargs)

            # handle unet skip connection

            skip_combine = None
            is_latter_half = block_begin and block_ind >= (self.depth / 2)

            if self.unet_skips and is_latter_half:
                skip_combine = ConcatCombine(dim, skip_indices.pop())

            # all normalizations of the layer

            pre_branch_norm = norm_fn() if pre_norm else None
            post_branch_norm = norm_fn() if sandwich_norm else None
            post_main_norm = norm_fn() if not pre_norm else None

            norms = ModuleList([
                pre_branch_norm,
                post_branch_norm,
                post_main_norm
            ])

            self.skip_combines.append(skip_combine)

            self.layer_integrators.append(layer_integrate)

            self.layers.append(ModuleList([
                norms,
                layer,
                residual
            ]))

        # determine whether can cache kv

        self.can_cache_kv = all([module.can_cache_kv for module in self.modules() if isinstance(module, Attention)])

    def forward(
        self,
        x,
        context = None,
        mask = None,
        context_mask = None,
        attn_mask = None,
        self_attn_kv_mask = None,
        mems = None,
        mem_masks = None,
        seq_start_pos: Tensor | None = None,
        cache: LayerIntermediates | None = None,
        cache_age = 1,
        return_hiddens = False,
        rotary_pos_emb = None,
        pos = None,
        context_pos = None,
        attn_bias = None,
        condition = None,
        in_attn_cond = None, # https://arxiv.org/abs/2105.04090
        layers_execute_order: tuple[int, ...] | None = None
    ):
        assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True'
        assert not (exists(condition) ^ self.need_condition), 'condition needs to be passed in if using adaptive layernorm or vice versa'

        # handle condition

        if exists(condition):
            assert condition.shape[-1] == self.dim_condition, f'expected condition dimension of {self.dim_condition} but received {condition.shape[-1]}'

            assert condition.ndim in {2, 3}

            if condition.ndim == 2:
                condition = rearrange(condition, 'b d -> b 1 d')

            condition = self.adaptive_mlp(condition)

        # setup maybe layernorm kwarg

        norm_kwargs = dict()

        if self.norm_need_condition:
            norm_kwargs.update(condition = condition)

        # maybe post branch fn conditioning (DiT paper's ada-ln-zero)

        block_forward_kwargs = dict()

        if self.post_branch_fn_needs_condition:
            block_forward_kwargs.update(condition = condition)

        # initialize accums

        hiddens = []
        layer_hiddens = []
        intermediates = []

        prev_attn = None
        prev_cross_attn = None

        mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
        mem_masks = mem_masks.copy() if exists(mem_masks) else [None] * self.num_attn_layers

        # handle left padded sequences

        if exists(seq_start_pos):
            seq_arange = arange(x.shape[-2], device = x.device, dtype = torch.long)
            left_pad_mask = seq_arange >= seq_start_pos[..., None]

            if exists(self_attn_kv_mask):
                self_attn_kv_mask = self_attn_kv_mask & left_pad_mask
            else:
                self_attn_kv_mask = left_pad_mask

        # rotary positions

        cross_attn_rotary_pos_emb = dict()

        if exists(self.rotary_pos_emb):
            if not exists(rotary_pos_emb):
                maybe_mem = first(mems, None) # todo - handle edge case where different layers get different memory lengths. don't think this will ever come up but who knows
                mem_len = maybe_mem.shape[1] if exists(maybe_mem) else 0

                if not exists(pos):
                    pos = arange(x.shape[1] + mem_len, device = x.device) - mem_len

                rotary_pos_emb = self.rotary_pos_emb(pos)

            # allow for rotary positions for context if provided

            if exists(context_pos):
                assert self.cross_attend
                context_rotary_pos_emb = self.rotary_pos_emb(context_pos)

                cross_attn_rotary_pos_emb.update(
                    rotary_pos_emb = rotary_pos_emb,
                    context_rotary_pos_emb = context_rotary_pos_emb
                )

        # assume cached key / values

        attn_cache = []

        if exists(cache):
            assert self.causal and not any([*map(exists, (mask, attn_mask))])

            if exists(context):
                context = context[:, :0]

            if cache_age > 0:
                x = x[:, -cache_age:] # for spec decoding, may be greater than 1

            attn_cache = cache.attn_intermediates

        iter_attn_cache = iter(attn_cache)

        # setup multistreams if needed

        streams = self.num_residual_streams
        is_multistream = streams > 1

        if is_multistream:
            x = einx.add('b n d, s d -> (b s) n d', x, self.stream_emb)

        # get layers to be executed

        layer_variables = (
            self.layer_types,
            self.skip_combines,
            self.layers,
            self.layer_dropouts,
            self.layer_integrators
        )

        # able to override the layers execution order on forward, for trying to depth extrapolate

        layers_execute_order = default(layers_execute_order, self.layers_execute_order)
        layer_variables = tuple(tuple(layer_variable[i] for i in layers_execute_order) for layer_variable in layer_variables)

        # derived input for reinjection if needed

        inp_inject = None

        if self.reinject_input:
            assert not exists(in_attn_cond)
            inp_inject = self.reinject_input_proj(x)

        elif exists(in_attn_cond):
            # handle in-attention conditioning, which serves the same purpose of having the network learn the residual
            inp_inject = in_attn_cond if in_attn_cond.ndim == 3 else rearrange(in_attn_cond, 'b d -> b 1 d')

        if exists(inp_inject) and exists(self.learned_reinject_input_gate):
            inp_inject_gate = self.learned_reinject_input_gate(x).sigmoid()
            inp_inject = inp_inject * inp_inject_gate

        # store all hiddens for skips

        skip_hiddens = []

        # for value residuals

        first_self_attn_inter = None
        first_cross_attn_inter = None

        # go through the attention and feedforward layers

        for ind, (layer_type, skip_combine, (norm, block, residual_fn), layer_dropout, layer_integrator) in enumerate(zip(*layer_variables)):
            is_last = ind == (len(self.layers) - 1)

            # handle skip connections

            skip_hiddens.append(x)

            if exists(skip_combine):
                x = skip_combine(x, skip_hiddens)

            # layer dropout

            if self.training and layer_dropout > 0. and random() < layer_dropout:
                continue

            if layer_type == 'a':
                if return_hiddens:
                    hiddens.append(x)

                layer_mem = mems.pop(0) if mems else None
                layer_mem_mask = mem_masks.pop(0) if mem_masks else None

            if layer_type == 'c':
                if self.training and self.cross_attn_tokens_dropout > 0.:
                    context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout)

            x, inner_residual, residual_kwargs = residual_fn.prepare(x)

            layer_hiddens.append(x)

            if exists(layer_integrator):
                x = layer_integrator(x, layer_hiddens)

            pre_norm, post_branch_norm, post_main_norm = norm

            if self.need_condition:
                pre_norm = maybe(partial)(pre_norm, **norm_kwargs)
                post_branch_norm = maybe(partial)(post_branch_norm, **norm_kwargs)
                post_main_norm = maybe(partial)(post_main_norm, **norm_kwargs)

            if exists(inp_inject):
                x = x + inp_inject

            if exists(pre_norm):
                x = pre_norm(x)

                if layer_type == 'a' and exists(layer_mem):
                    layer_mem = pre_norm(layer_mem)

            block = partial(block, **block_forward_kwargs)

            # handle maybe value residuals

            maybe_self_attn_value_residual = None
            maybe_cross_attn_value_residual = None

            if self.add_value_residual:
                if exists(first_self_attn_inter):
                    maybe_self_attn_value_residual = first_self_attn_inter.values

                if exists(first_cross_attn_inter):
                    maybe_cross_attn_value_residual = first_cross_attn_inter.values

            # forward depending on layer type

            if layer_type == 'a':
                out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, pos = pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, mem_mask = layer_mem_mask, attn_bias = attn_bias, value_residual = maybe_self_attn_value_residual, return_intermediates = True)
            elif layer_type == 'c':
                out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn, cache = next(iter_attn_cache, None), value_residual = maybe_cross_attn_value_residual, **cross_attn_rotary_pos_emb, return_intermediates = True)
            elif layer_type == 'f':
                out = block(x)

            # store first self or cross attention intermediate for value residual

            if not exists(first_self_attn_inter) and layer_type == 'a':
                first_self_attn_inter = inter

            if not exists(first_cross_attn_inter) and layer_type == 'c':
                first_cross_attn_inter = inter

            if exists(post_branch_norm):
                out = post_branch_norm(out)

            x = residual_fn(out, inner_residual, **residual_kwargs)

            if layer_type in ('a', 'c') and return_hiddens:
                inter.layer_type = layer_type
                intermediates.append(inter)

            if layer_type == 'a' and self.residual_attn:
                prev_attn = inter.pre_softmax_attn
            elif layer_type == 'c' and self.cross_residual_attn:
                prev_cross_attn = inter.pre_softmax_attn

            if exists(post_main_norm):
                x = post_main_norm(x)

        if return_hiddens:
            layer_hiddens.append(x)

        if self.softclamp_output:
            x = softclamp(x, self.softclamp_output_value)

        final_norm = self.final_norm

        if self.need_condition:
            final_norm = maybe(partial)(final_norm, **norm_kwargs)

        # take care of multistreams if needed, use sum for now

        if is_multistream:
            x = reduce(x, '(b s) n d -> b n d', 'sum', s = streams)

        x = final_norm(x)

        if not return_hiddens:
            return x

        intermediates = LayerIntermediates(
            hiddens = hiddens,
            last_hidden = x,
            attn_intermediates = intermediates,
            layer_hiddens = layer_hiddens,
        )

        return x, intermediates

class Encoder(AttentionLayers):
    def __init__(self, **kwargs):
        assert 'causal' not in kwargs, 'cannot set causality on encoder'
        super().__init__(causal = False, **kwargs)

class Decoder(AttentionLayers):
    def __init__(self, **kwargs):
        assert 'causal' not in kwargs, 'cannot set causality on decoder'
        super().__init__(causal = True, **kwargs)

class PrefixDecoder(AttentionLayers):
    def __init__(self, **kwargs):
        assert 'causal' not in kwargs, 'cannot set causality on decoder'
        super().__init__(causal = False, **kwargs)

    def forward(
        self,
        x,
        *args,
        attn_mask = None,
        prefix_attn_len = None,
        **kwargs
    ):
        b, n, device = x.shape[0], x.shape[1], x.device
        causal_mask = torch.ones((n, n), device = device, dtype = torch.bool).triu(1)

        forwarded_mask = ~causal_mask

        if exists(prefix_attn_len):
            if isinstance(prefix_attn_len, int):
                prefix_attn_len = torch.full((b,), prefix_attn_len, device = device)

            prefix_mask = arange(n, device = device) < rearrange(prefix_attn_len, 'b -> b 1 1 1')
            forwarded_mask = forwarded_mask | prefix_mask

        if exists(attn_mask):
            forwarded_mask = forwarded_mask & attn_mask

        return super().forward(x, *args, attn_mask = forwarded_mask, **kwargs)

class CrossAttender(AttentionLayers):
    def __init__(self, **kwargs):
        super().__init__(cross_attend = True, only_cross = True, **kwargs)

class ViTransformerWrapper(Module):
    def __init__(
        self,
        *,
        image_size,
        patch_size,
        attn_layers: Encoder,
        channels = 3,
        num_classes = None,
        post_emb_norm = False,
        num_register_tokens = 0,
        emb_dropout = 0.
    ):
        super().__init__()
        assert divisible_by(image_size, patch_size), 'image dimensions must be divisible by the patch size'
        dim = attn_layers.dim
        num_patches = (image_size // patch_size) ** 2
        patch_dim = channels * patch_size ** 2

        self.patch_size = patch_size

        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))

        has_register_tokens = num_register_tokens > 0
        self.has_register_tokens = has_register_tokens

        if has_register_tokens:
            self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim))

        self.patch_to_embedding = nn.Sequential(
            LayerNorm(patch_dim),
            nn.Linear(patch_dim, dim),
            LayerNorm(dim)
        )

        self.post_emb_norm = LayerNorm(dim) if post_emb_norm else nn.Identity()
        self.dropout = nn.Dropout(emb_dropout)

        self.attn_layers = attn_layers

        self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity()

    def forward(
        self,
        img,
        return_embeddings = False,
        return_logits_and_embeddings = False
    ):
        b, p = img.shape[0], self.patch_size

        x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
        x = self.patch_to_embedding(x)
        n = x.shape[1]

        x = x + self.pos_embedding[:, :n]

        x = self.post_emb_norm(x)
        x = self.dropout(x)

        if self.has_register_tokens:
            r = repeat(self.register_tokens, 'n d -> b n d', b = b)
            x, ps = pack((x, r), 'b * d')

        embed = self.attn_layers(x)

        if self.has_register_tokens:
            embed, _ = unpack(embed, ps, 'b * d')

        assert at_most_one_of(return_embeddings, return_logits_and_embeddings)

        if not exists(self.mlp_head) or return_embeddings:
            return embed

        pooled = embed.mean(dim = -2)
        logits = self.mlp_head(pooled)

        if not return_logits_and_embeddings:
            return logits

        return logits, embed

class TransformerWrapper(Module):
    def __init__(
        self,
        *,
        num_tokens,
        max_seq_len,
        attn_layers: AttentionLayers,
        embed_num_tokens: dict[str, int] = dict(),
        emb_dim = None,
        max_mem_len = 0,
        shift_mem_down = 0,
        emb_dropout = 0.,
        post_emb_norm = False,
        num_memory_tokens = None,
        memory_tokens_interspersed_every = None,
        tie_embedding = False,
        logits_dim = None,
        return_only_embed = False,
        num_output_heads = 1,
        use_abs_pos_emb = True,
        scaled_sinu_pos_emb = False,
        l2norm_embed = False,
        recycling = False,            # from Jumper et al. - Alphafold2
        train_max_recycle_steps = 4,  # saw a benefit for language modeling up to 3 recycling steps, so let's default this to 4
        emb_frac_gradient = 1.,       # GLM-130B and Cogview successfully used this, set at 0.1
        attn_z_loss_weight = 1e-4,
        average_pool_embed = False,
        use_cls_token = False,
        num_cls_tokens = 1,
        squeeze_out_last_dim = False,
        token_emb: TokenEmbedding | None = None,
        mixture_of_softmax = False,
        mixture_of_softmax_k = 4,
        sigsoftmax_logits = False,
        to_logits: Module | None = None,
    ):
        super().__init__()

        dim = attn_layers.dim
        emb_dim = default(emb_dim, dim)
        self.emb_dim = emb_dim
        self.num_tokens = num_tokens
        self.num_cls_tokens = num_cls_tokens

        self.max_seq_len = max_seq_len
        self.max_mem_len = max_mem_len
        self.shift_mem_down = shift_mem_down

        self.l2norm_embed = l2norm_embed

        if not exists(token_emb):
            token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed)

        self.token_emb = token_emb

        no_abs_pos_emb = max_seq_len == 0 or not (use_abs_pos_emb and not attn_layers.disable_abs_pos_emb)

        if no_abs_pos_emb:
            self.pos_emb = always(0)
        elif scaled_sinu_pos_emb:
            self.pos_emb = ScaledSinusoidalEmbedding(emb_dim)
        else:
            self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed)

        # additional embeddings - say type embedding from BERT

        self.embeds = None

        if len(embed_num_tokens) > 0:
            self.embeds = ModuleDict({f'{name}_embed': nn.Embedding(num_tokens, emb_dim) for name, num_tokens in embed_num_tokens.items()})

        # fraction of the gradient that should go to the embedding, https://arxiv.org/abs/2105.13290

        self.emb_frac_gradient = emb_frac_gradient

        self.post_emb_norm = LayerNorm(emb_dim) if post_emb_norm else nn.Identity()
        self.emb_dropout = nn.Dropout(emb_dropout)

        self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
        self.attn_layers = attn_layers

        self.init_()

        assert num_output_heads > 0

        assert at_most_one_of(average_pool_embed, use_cls_token)

        # maybe recycling

        self.recycling = recycling
        self.recycled_proj = LinearNoBias(dim, dim) if recycling else None

        self.train_max_recycle_steps = train_max_recycle_steps

        # classic cls token from the bert days

        self.cls_token = None

        if use_cls_token:
            self.cls_token = nn.Parameter(torch.zeros(num_cls_tokens, dim))
            nn.init.normal_(self.cls_token, std = 0.02)

        # whether to average pool the embed (`global average pool`)

        self.average_pool_embed = average_pool_embed

        # output type

        self.output_is_log_prob = mixture_of_softmax

        self.to_mixture = None
        self.combine_mixture = None

        if mixture_of_softmax:
            assert num_output_heads == 1

            self.to_mixture = Sequential(
                LinearNoBias(dim, dim * mixture_of_softmax_k),
                Rearrange('... (k d) -> ... k d', k = mixture_of_softmax_k)
            )

            self.combine_mixture = LinearNoBias(dim, mixture_of_softmax_k)

        # sig softmax

        self.sigsoftmax_logits = sigsoftmax_logits

        # output head, usually to logits of num_tokens

        logits_dim = default(logits_dim, num_tokens)

        self.has_multiple_heads = num_output_heads > 1

        if return_only_embed:
            self.to_logits = None
        elif tie_embedding:
            assert isinstance(token_emb, TokenEmbedding), 'can only tie embedding if using `TokenEmbedding`'
            self.to_logits = lambda t: t @ self.token_emb.emb.weight.t()
        elif num_output_heads > 1:
            self.to_logits = ModuleList([LinearNoBias(dim, logits_dim) for _ in range(num_output_heads)])
        else:
            self.to_logits = LinearNoBias(dim, logits_dim) if not exists(to_logits) else to_logits

        # memory tokens (like [cls]) from Memory Transformers paper

        num_memory_tokens = default(num_memory_tokens, 0)
        self.num_memory_tokens = num_memory_tokens
        if num_memory_tokens > 0:
            self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))

        self.memory_tokens_interspersed_every = memory_tokens_interspersed_every

        # squeeze out last dimension if possible

        self.squeeze_out_last_dim = squeeze_out_last_dim

        # whether can do cached kv decoding

        self.can_cache_kv = self.num_memory_tokens == 0 and not recycling and self.attn_layers.can_cache_kv
        self.can_cache_kv_outside_max_seq_len = no_abs_pos_emb

    def init_(self):
        if hasattr(self.token_emb, 'init_'):
            self.token_emb.init_()

        if self.l2norm_embed:
            if not isinstance(self.pos_emb, always):
                nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5)

    def forward(
        self,
        x,
        return_embeddings = False,
        return_logits_and_embeddings = False,
        return_intermediates = False,
        return_embeddings_and_intermediates = False,
        return_logit_entropies = False,
        mask = None,
        return_mems = False,
        return_attn = False,
        mems = None,
        mem_masks = None,
        recycle_steps = None,
        pos = None,
        prepend_embeds = None,
        prepend_mask = None,
        embed_ids: dict[str, Tensor] = dict(),
        sum_embeds = None,
        return_attn_z_loss = False,
        attn_z_loss_weight = 1e-4,
        seq_start_pos = None,
        cache: LayerIntermediates | None = None,
        token_emb_kwargs = dict(),
        to_logits_kwargs = dict(),
        **kwargs,
    ):

        # if sequence is None, auto create an empty one if `prepend_embeds` was supplied

        if not exists(x):
            assert exists(prepend_embeds)
            x = prepend_embeds.new_empty((prepend_embeds.shape[0], 0), dtype = torch.long)

        # shapes and variables

        b, n, device, num_mems, has_memory_tokens, emb_frac_gradient, orig_mask = x.shape[0], x.shape[1], x.device, self.num_memory_tokens, self.num_memory_tokens > 0, self.emb_frac_gradient, mask

        return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss | return_embeddings_and_intermediates
        return_embeddings = return_embeddings | (not exists(self.to_logits)) | return_embeddings_and_intermediates

        # absolute positional embedding

        external_pos_emb = exists(pos) and pos.dtype != torch.long
        pos_emb = self.pos_emb(x, pos = pos, seq_start_pos = seq_start_pos) if not external_pos_emb else pos
        x = self.token_emb(x, **token_emb_kwargs) + pos_emb

        # add additional embeddings

        assert not (exists(self.embeds) ^ (len(embed_ids) > 0)), '`embed_num_tokens` must be defined on `TransformerWrapper`'

        if exists(self.embeds):
            assert len(embed_ids) == len(self.embeds)

            for name, embed_id in embed_ids.items():
                embed_key = f'{name}_embed'

                assert embed_key in self.embeds
                embed = self.embeds[embed_key](embed_id)

                x = x + embed

        # for summing embeddings passed externally - needs this for self-conditioning in non-autoregressive training

        if exists(sum_embeds):
            x = x + sum_embeds

        # post embedding norm, purportedly leads to greater stabilization

        x = self.post_emb_norm(x)

        # whether to append embeds, as in PaLI, for image embeddings

        if exists(prepend_embeds):
            prepend_seq, prepend_dim = prepend_embeds.shape[1:]
            assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions'

            x = cat((prepend_embeds, x), dim = -2)

            if exists(prepend_mask) or exists(mask):
                mask = default(mask, lambda: torch.ones((b, n), device = device, dtype = torch.bool))
                prepend_mask = default(prepend_mask, lambda: torch.ones((b, prepend_seq), device = device, dtype = torch.bool))

                mask = cat((prepend_mask, mask), dim = -1)

        # whether to reduce the gradient going to the embedding, from cogview paper, corroborated by GLM-130B model

        if emb_frac_gradient < 1:
            assert emb_frac_gradient > 0
            x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient)

        # embedding dropout

        x = self.emb_dropout(x)

        x = self.project_emb(x)

        # maybe cls token

        if exists(self.cls_token):
            cls_tokens = repeat(self.cls_token, '... -> b ...', b = b)
            x, cls_packed_shape = pack([cls_tokens, x], 'b * d')

            if exists(mask):
                mask = F.pad(mask, (self.num_cls_tokens, 0), value = True)

        # maybe memory / register tokens

        if has_memory_tokens:
            mem_seq = x.shape[-2]
            mem_every = self.memory_tokens_interspersed_every

            if exists(mem_every):
                assert mem_every > 0
                assert isinstance(self.attn_layers, Decoder), 'only for decoder'
                next_seq_len = math.ceil(n / mem_every) * mem_every

                x = pad_at_dim(x, (0, next_seq_len - n), dim = -2, value = 0.)
                x = rearrange(x, 'b (n m) d -> (b n) m d', m = mem_every)

            mem = repeat(self.memory_tokens, 'n d -> b n d', b = x.shape[0])
            x, mem_packed_shape = pack((mem, x), 'b * d')

            # auto-handle masking after appending memory tokens
            if not exists(mem_every) and exists(mask):
                mask = pad_at_dim(mask, (num_mems, 0), dim = -1, value = True)

            if exists(mem_every):
                x = rearrange(x, '(b n) m d -> b (n m) d', b = b)

        # handle maybe shifting of memories

        if self.shift_mem_down and exists(mems):
            mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:]
            mems = [*mems_r, *mems_l]

        # attention layers

        if not self.recycling:
            assert not exists(recycle_steps) or recycle_steps == 1, 'you did not train with recycling'

            # regular

            attended, intermediates = self.attn_layers(x, mask = mask, mems = mems, mem_masks = mem_masks, cache = cache, return_hiddens = True, seq_start_pos = seq_start_pos, **kwargs)

        else:
            # recycling

            recycle_steps = default(recycle_steps, (randrange(self.train_max_recycle_steps) + 1) if self.training else None)
            assert exists(recycle_steps) and recycle_steps > 0, '`recycle_steps` must be provided on forward if recycling is turned on and not training'

            for i in range(recycle_steps):
                first_step = i == 0
                last_step = i == (recycle_steps - 1)

                context = nullcontext if last_step else torch.no_grad

                with context():
                    maybe_recycled = self.recycled_proj(attended.detach()) if not first_step else 0.

                    attended, intermediates = self.attn_layers(x + maybe_recycled, mask = mask, mems = mems, mem_masks = mem_masks, cache = cache, return_hiddens = True, seq_start_pos = seq_start_pos, **kwargs)

        x = attended

        # handle memories post-attention

        if has_memory_tokens:
            if exists(mem_every):
                x = rearrange(x, 'b (n m) d -> (b n) m d', m = (mem_every + num_mems))

            mem, x = unpack(x, mem_packed_shape, 'b * d')

            intermediates.memory_tokens = mem

            if exists(mem_every):
                x = rearrange(x, '(b n) m d -> b (n m) d', b = b)

            x = x[:, :mem_seq]

        # global average pool

        if self.average_pool_embed:
            x = masked_mean(x, mask = orig_mask, dim = 1)

        if exists(self.cls_token):
            x, _ = unpack(x, cls_packed_shape, 'b * d')
            x = x.squeeze(1)  # Remove sequence dimension if num_cls_tokens=1 to keep previous behavior

        # handle expansion to mixture if needed (for mixture of softmax)

        combine_mixture = None

        if exists(self.to_mixture):
            combine_mixture = self.combine_mixture(x).softmax(dim = -1)
            x = self.to_mixture(x)

        # projecting to logits

        if not return_embeddings:
            if self.has_multiple_heads:
                logits = tuple(fn(x, **to_logits_kwargs) for fn in self.to_logits)
            else:
                logits = self.to_logits(x, **to_logits_kwargs)

        # maybe sig softmax

        if self.sigsoftmax_logits:
            logits = logits + logits.sigmoid().log()

        # handle maybe combine mixture

        if exists(combine_mixture):
            with autocast('cuda', enabled = False):
                prob = logits.softmax(dim = -1)
                mos = einsum('... k d, ... k -> ... d', prob, combine_mixture)
                logits = log(mos)

        # maybe squeeze out last dimension of logits

        if self.squeeze_out_last_dim:
            logits = tuple((rearrange(t, '... 1 -> ...') if t.shape[-1] == 1 else t) for t in cast_tuple(logits))

            if not self.has_multiple_heads:
                logits = first(logits)

        # different returns

        if return_logits_and_embeddings:
            out = (logits, x)
        elif return_embeddings_and_intermediates:
            out = (x, intermediates)
        elif return_embeddings:
            out = x
        else:
            out = logits

        # logit entropies

        if return_logit_entropies:
            intermediates.logit_entropies = calc_entropy(logits)
            return_intermediates = True

        # aux loss

        if return_attn_z_loss:
            pre_softmax_attns = [t.pre_softmax_attn for t in  intermediates.attn_intermediates]
            intermediates.attn_z_loss = calc_z_loss(pre_softmax_attns, weight = attn_z_loss_weight)
            return_intermediates = True

        if return_mems:
            hiddens = intermediates.hiddens
            new_mems = [cat(pair, dim = -2) for pair in zip(mems, hiddens)] if exists(mems) else hiddens
            new_mems = [t[..., -self.max_mem_len:, :].detach() for t in new_mems]

            if not return_intermediates:
                return out, new_mems

            intermediates.mems = new_mems

        if return_intermediates:
            return out, intermediates

        if return_attn:
            attn_maps = [t.post_softmax_attn for t in intermediates.attn_intermediates]
            return out, attn_maps

        return out

class XTransformer(Module):
    def __init__(
        self,
        *,
        dim,
        tie_token_emb = False,
        ignore_index = -100,
        pad_value = 0,
        cross_attn_tokens_dropout = 0.,
        **kwargs
    ):
        super().__init__()
        enc_kwargs, kwargs = groupby_prefix_and_trim('enc_', kwargs)
        dec_kwargs, kwargs = groupby_prefix_and_trim('dec_', kwargs)

        assert 'dim' not in enc_kwargs and 'dim' not in dec_kwargs, 'dimension of either encoder or decoder must be set with `dim` keyword'
        enc_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], enc_kwargs)
        enc_transformer_kwargs['emb_dropout'] = enc_kwargs.pop('emb_dropout', 0)
        enc_transformer_kwargs['num_memory_tokens'] = enc_kwargs.pop('num_memory_tokens', None)
        enc_transformer_kwargs['scaled_sinu_pos_emb'] = enc_kwargs.pop('scaled_sinu_pos_emb', False)
        enc_transformer_kwargs['use_abs_pos_emb'] = enc_kwargs.pop('use_abs_pos_emb', True)

        dec_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], dec_kwargs)
        dec_transformer_kwargs['emb_dropout'] = dec_kwargs.pop('emb_dropout', 0)
        dec_transformer_kwargs['scaled_sinu_pos_emb'] = dec_kwargs.pop('scaled_sinu_pos_emb', False)
        dec_transformer_kwargs['use_abs_pos_emb'] = dec_kwargs.pop('use_abs_pos_emb', True)

        self.cross_attn_tokens_dropout = cross_attn_tokens_dropout  # how many tokens from the encoder to dropout when cross attending from decoder - seen in a couple papers, including Perceiver AR - this will also be very effective regularization when cross attending to very long memories

        self.encoder = TransformerWrapper(
            **enc_transformer_kwargs,
            return_only_embed = True,
            attn_layers = Encoder(dim = dim, **enc_kwargs)
        )

        self.decoder = TransformerWrapper(
            **dec_transformer_kwargs,
            attn_layers = Decoder(dim = dim, cross_attend = True, **dec_kwargs)
        )

        if tie_token_emb:
            self.decoder.token_emb = self.encoder.token_emb

        self.decoder = AutoregressiveWrapper(self.decoder, ignore_index=ignore_index, pad_value=pad_value)

    @torch.no_grad()
    def generate(self, seq_in, seq_out_start, seq_len, mask = None, attn_mask = None, **kwargs):
        encodings = self.encoder(seq_in, mask = mask, attn_mask = attn_mask, return_embeddings = True)
        return self.decoder.generate(seq_out_start, seq_len, context = encodings, context_mask = mask, **kwargs)

    def forward(self, src, tgt, mask = None, attn_mask = None, src_prepend_embeds = None):

        enc = self.encoder(src, mask = mask, attn_mask = attn_mask, prepend_embeds = src_prepend_embeds, return_embeddings = True)

        if exists(src_prepend_embeds) and exists(mask):
            mask = pad_at_dim(mask, (src_prepend_embeds.shape[-2], 0), dim = -1, value = True)

        if self.training and self.cross_attn_tokens_dropout > 0:
            enc, mask = dropout_seq(enc, mask, self.cross_attn_tokens_dropout)

        out = self.decoder(tgt, context = enc, context_mask = mask)
        return out