File size: 5,920 Bytes
7758cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# coding: utf-8

import torch
import numpy as np
from pykalman import KalmanFilter
PI = np.pi

device = "cuda"
def get_rotation_matrix(pitch_, yaw_, roll_):
    """ the input is in degree
    """
    # transform to radian
    pitch = pitch_ / 180 * PI
    yaw = yaw_ / 180 * PI
    roll = roll_ / 180 * PI

    device = pitch.device

    if pitch.ndim == 1:
        pitch = pitch.unsqueeze(1)
    if yaw.ndim == 1:
        yaw = yaw.unsqueeze(1)
    if roll.ndim == 1:
        roll = roll.unsqueeze(1)

    # calculate the euler matrix
    bs = pitch.shape[0]
    ones = torch.ones([bs, 1]).to(device)
    zeros = torch.zeros([bs, 1]).to(device)
    x, y, z = pitch, yaw, roll

    rot_x = torch.cat([
        ones, zeros, zeros,
        zeros, torch.cos(x), -torch.sin(x),
        zeros, torch.sin(x), torch.cos(x)
    ], dim=1).reshape([bs, 3, 3])

    rot_y = torch.cat([
        torch.cos(y), zeros, torch.sin(y),
        zeros, ones, zeros,
        -torch.sin(y), zeros, torch.cos(y)
    ], dim=1).reshape([bs, 3, 3])

    rot_z = torch.cat([
        torch.cos(z), -torch.sin(z), zeros,
        torch.sin(z), torch.cos(z), zeros,
        zeros, zeros, ones
    ], dim=1).reshape([bs, 3, 3])

    rot = rot_z @ rot_y @ rot_x
    return rot.permute(0, 2, 1)  # transpose

def smooth(x_d_lst, shape, device, observation_variance=3e-7, process_variance=1e-5):
    x_d_lst_reshape = [x.reshape(-1) for x in x_d_lst]
    x_d_stacked = np.vstack(x_d_lst_reshape)
    kf = KalmanFilter(
        initial_state_mean=x_d_stacked[0],
        n_dim_obs=x_d_stacked.shape[1],
        transition_covariance=process_variance * np.eye(x_d_stacked.shape[1]),
        observation_covariance=observation_variance * np.eye(x_d_stacked.shape[1])
    )
    smoothed_state_means, _ = kf.smooth(x_d_stacked)
    x_d_lst_smooth = [torch.tensor(state_mean.reshape(shape[-2:]), dtype=torch.float32, device=device) for state_mean in smoothed_state_means]
    return x_d_lst_smooth

class ExponentialMovingAverageFilter:
    def __init__(self, alpha=0.6):
        self.alpha = alpha
        self.smoothed_value = None

    def update(self, new_value):
        if self.smoothed_value is None:
            self.smoothed_value = new_value
        else:
            self.smoothed_value = self.alpha * new_value + (1 - self.alpha) * self.smoothed_value
        return self.smoothed_value

class MovingAverageFilter:
    def __init__(self, window_size):
        self.window_size = window_size
        self.buffer = np.zeros((window_size, 7))
        self.index = 0
        self.full = False

    def update(self, new_value):
        # 更新队列
        self.buffer[self.index] = new_value
        self.index = (self.index + 1) % self.window_size
        
        # 如果队列未满,则只计算已有的元素
        if not self.full and self.index == 0:
            self.full = True

        # 计算平均值
        return np.mean(self.buffer[:self.window_size if self.full else self.index], axis=0)

class MedianFilter:
    def __init__(self, window_size):
        self.window_size = window_size
        self.buffer = np.zeros((window_size, 7))
        self.index = 0
        self.full = False

    def update(self, new_value):
        # 更新队列
        self.buffer[self.index] = new_value
        self.index = (self.index + 1) % self.window_size
        
        # 如果队列未满,则只计算已有的元素
        if not self.full and self.index == 0:
            self.full = True

        # 计算中值
        return np.median(self.buffer[:self.window_size if self.full else self.index], axis=0)

def smooth_(ori_data, method="median"):
    # 均值滤波 & 中值滤波
    data_array = []
    for frame_idx in range(ori_data["n_frames"]):
        data_array.append(
            np.concatenate((
                ori_data['motion'][frame_idx]["scale"].flatten(),
                ori_data['motion'][frame_idx]["t"].flatten(),
                ori_data['motion'][frame_idx]["pitch"].flatten(),
                ori_data['motion'][frame_idx]["yaw"].flatten(),
                ori_data['motion'][frame_idx]["roll"].flatten(),
            ))
        )
    data_array = np.array(data_array).astype(np.float32)
    # print("data_array.shape: ", data_array.shape)
    
    # 滑动窗口大小
    if method == "median":
        window_size = 3
        ma_filter = MedianFilter(window_size)
    elif method == "ema":
        ma_filter = ExponentialMovingAverageFilter(alpha=0.01)
    else: 
        window_size = 10
        ma_filter = MovingAverageFilter(window_size)
    smoothed_data = []
    for value in data_array:
        smoothed_value = ma_filter.update(value)
        smoothed_data.append(smoothed_value)
    smoothed_data = np.array(smoothed_data).astype(np.float32)
    # print("smoothed_data_mean.shape: ", smoothed_data.shape)

    # 整理结果
    motion_list = []
    for idx in range(smoothed_data.shape[0]):
        exp = ori_data["motion"][idx]["exp"]
        scale = smoothed_data[idx][0:1].reshape(1, 1)
        # scale = 1.2 * np.ones((1, 1)).reshape(1, 1).astype(np.float32)
        t = smoothed_data[idx][1:4].reshape(1, 3).astype(np.float32)
        pitch = smoothed_data[idx][4:5].reshape(1, 1).astype(np.float32)
        yaw = smoothed_data[idx][5:6].reshape(1, 1).astype(np.float32)
        roll = smoothed_data[idx][6:7].reshape(1, 1).astype(np.float32)
        R = get_rotation_matrix(torch.FloatTensor(pitch), torch.FloatTensor(yaw), torch.FloatTensor(roll))
        R = R.reshape(1, 3, 3).cpu().numpy().astype(np.float32)

        motion_list.append({"exp": exp, "scale": scale, "t": t, "pitch": pitch, "yaw": yaw, "roll": roll, "R": R})
    # print(f"exp: {exp.shape}, scale: {scale.shape}, t: {t.shape}, pitch: {pitch.shape}, yaw: {yaw.shape}, roll: {roll.shape}, R: {R.shape}")
    tgt_motion = {'n_frames': smoothed_data.shape[0], 'output_fps': 25, 'motion': motion_list}
    return tgt_motion