File size: 5,920 Bytes
7758cff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# coding: utf-8
import torch
import numpy as np
from pykalman import KalmanFilter
PI = np.pi
device = "cuda"
def get_rotation_matrix(pitch_, yaw_, roll_):
""" the input is in degree
"""
# transform to radian
pitch = pitch_ / 180 * PI
yaw = yaw_ / 180 * PI
roll = roll_ / 180 * PI
device = pitch.device
if pitch.ndim == 1:
pitch = pitch.unsqueeze(1)
if yaw.ndim == 1:
yaw = yaw.unsqueeze(1)
if roll.ndim == 1:
roll = roll.unsqueeze(1)
# calculate the euler matrix
bs = pitch.shape[0]
ones = torch.ones([bs, 1]).to(device)
zeros = torch.zeros([bs, 1]).to(device)
x, y, z = pitch, yaw, roll
rot_x = torch.cat([
ones, zeros, zeros,
zeros, torch.cos(x), -torch.sin(x),
zeros, torch.sin(x), torch.cos(x)
], dim=1).reshape([bs, 3, 3])
rot_y = torch.cat([
torch.cos(y), zeros, torch.sin(y),
zeros, ones, zeros,
-torch.sin(y), zeros, torch.cos(y)
], dim=1).reshape([bs, 3, 3])
rot_z = torch.cat([
torch.cos(z), -torch.sin(z), zeros,
torch.sin(z), torch.cos(z), zeros,
zeros, zeros, ones
], dim=1).reshape([bs, 3, 3])
rot = rot_z @ rot_y @ rot_x
return rot.permute(0, 2, 1) # transpose
def smooth(x_d_lst, shape, device, observation_variance=3e-7, process_variance=1e-5):
x_d_lst_reshape = [x.reshape(-1) for x in x_d_lst]
x_d_stacked = np.vstack(x_d_lst_reshape)
kf = KalmanFilter(
initial_state_mean=x_d_stacked[0],
n_dim_obs=x_d_stacked.shape[1],
transition_covariance=process_variance * np.eye(x_d_stacked.shape[1]),
observation_covariance=observation_variance * np.eye(x_d_stacked.shape[1])
)
smoothed_state_means, _ = kf.smooth(x_d_stacked)
x_d_lst_smooth = [torch.tensor(state_mean.reshape(shape[-2:]), dtype=torch.float32, device=device) for state_mean in smoothed_state_means]
return x_d_lst_smooth
class ExponentialMovingAverageFilter:
def __init__(self, alpha=0.6):
self.alpha = alpha
self.smoothed_value = None
def update(self, new_value):
if self.smoothed_value is None:
self.smoothed_value = new_value
else:
self.smoothed_value = self.alpha * new_value + (1 - self.alpha) * self.smoothed_value
return self.smoothed_value
class MovingAverageFilter:
def __init__(self, window_size):
self.window_size = window_size
self.buffer = np.zeros((window_size, 7))
self.index = 0
self.full = False
def update(self, new_value):
# 更新队列
self.buffer[self.index] = new_value
self.index = (self.index + 1) % self.window_size
# 如果队列未满,则只计算已有的元素
if not self.full and self.index == 0:
self.full = True
# 计算平均值
return np.mean(self.buffer[:self.window_size if self.full else self.index], axis=0)
class MedianFilter:
def __init__(self, window_size):
self.window_size = window_size
self.buffer = np.zeros((window_size, 7))
self.index = 0
self.full = False
def update(self, new_value):
# 更新队列
self.buffer[self.index] = new_value
self.index = (self.index + 1) % self.window_size
# 如果队列未满,则只计算已有的元素
if not self.full and self.index == 0:
self.full = True
# 计算中值
return np.median(self.buffer[:self.window_size if self.full else self.index], axis=0)
def smooth_(ori_data, method="median"):
# 均值滤波 & 中值滤波
data_array = []
for frame_idx in range(ori_data["n_frames"]):
data_array.append(
np.concatenate((
ori_data['motion'][frame_idx]["scale"].flatten(),
ori_data['motion'][frame_idx]["t"].flatten(),
ori_data['motion'][frame_idx]["pitch"].flatten(),
ori_data['motion'][frame_idx]["yaw"].flatten(),
ori_data['motion'][frame_idx]["roll"].flatten(),
))
)
data_array = np.array(data_array).astype(np.float32)
# print("data_array.shape: ", data_array.shape)
# 滑动窗口大小
if method == "median":
window_size = 3
ma_filter = MedianFilter(window_size)
elif method == "ema":
ma_filter = ExponentialMovingAverageFilter(alpha=0.01)
else:
window_size = 10
ma_filter = MovingAverageFilter(window_size)
smoothed_data = []
for value in data_array:
smoothed_value = ma_filter.update(value)
smoothed_data.append(smoothed_value)
smoothed_data = np.array(smoothed_data).astype(np.float32)
# print("smoothed_data_mean.shape: ", smoothed_data.shape)
# 整理结果
motion_list = []
for idx in range(smoothed_data.shape[0]):
exp = ori_data["motion"][idx]["exp"]
scale = smoothed_data[idx][0:1].reshape(1, 1)
# scale = 1.2 * np.ones((1, 1)).reshape(1, 1).astype(np.float32)
t = smoothed_data[idx][1:4].reshape(1, 3).astype(np.float32)
pitch = smoothed_data[idx][4:5].reshape(1, 1).astype(np.float32)
yaw = smoothed_data[idx][5:6].reshape(1, 1).astype(np.float32)
roll = smoothed_data[idx][6:7].reshape(1, 1).astype(np.float32)
R = get_rotation_matrix(torch.FloatTensor(pitch), torch.FloatTensor(yaw), torch.FloatTensor(roll))
R = R.reshape(1, 3, 3).cpu().numpy().astype(np.float32)
motion_list.append({"exp": exp, "scale": scale, "t": t, "pitch": pitch, "yaw": yaw, "roll": roll, "R": R})
# print(f"exp: {exp.shape}, scale: {scale.shape}, t: {t.shape}, pitch: {pitch.shape}, yaw: {yaw.shape}, roll: {roll.shape}, R: {R.shape}")
tgt_motion = {'n_frames': smoothed_data.shape[0], 'output_fps': 25, 'motion': motion_list}
return tgt_motion
|