|
from transformers import HubertModel |
|
from transformers.modeling_outputs import BaseModelOutput |
|
|
|
from .wav2vec2 import linear_interpolation |
|
|
|
|
|
_CONFIG_FOR_DOC = 'HubertConfig' |
|
|
|
|
|
class HubertModel(HubertModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
def forward(self, input_values, output_fps=25, attention_mask=None, output_attentions=None, |
|
output_hidden_states=None, return_dict=None, frame_num=None): |
|
self.config.output_attentions = True |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
extract_features = self.feature_extractor(input_values) |
|
|
|
if frame_num is not None: |
|
extract_features_len = round(frame_num * 50 / output_fps) |
|
extract_features = extract_features[:, :, :extract_features_len] |
|
extract_features = linear_interpolation(extract_features, 50, output_fps, output_len=frame_num) |
|
extract_features = extract_features.transpose(1, 2) |
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask) |
|
|
|
hidden_states = self.feature_projection(extract_features) |
|
hidden_states = self._mask_hidden_states(hidden_states) |
|
|
|
encoder_outputs = self.encoder( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
if not return_dict: |
|
return (hidden_states,) + encoder_outputs[1:] |
|
|
|
return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, ) |
|
|