Delete app-backup.py
Browse files- app-backup.py +0 -446
app-backup.py
DELETED
@@ -1,446 +0,0 @@
|
|
1 |
-
# app.py
|
2 |
-
|
3 |
-
import os
|
4 |
-
import sys
|
5 |
-
import time
|
6 |
-
import gradio as gr
|
7 |
-
import spaces
|
8 |
-
from huggingface_hub import snapshot_download
|
9 |
-
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError, RevisionNotFoundError
|
10 |
-
from pathlib import Path
|
11 |
-
import tempfile
|
12 |
-
from pydub import AudioSegment
|
13 |
-
import cv2
|
14 |
-
import numpy as np
|
15 |
-
from scipy import interpolate
|
16 |
-
|
17 |
-
# Add the src directory to the system path to allow for local imports
|
18 |
-
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), 'src')))
|
19 |
-
|
20 |
-
from models.inference.moda_test import LiveVASAPipeline, emo_map, set_seed
|
21 |
-
|
22 |
-
# --- Configuration ---
|
23 |
-
# Set seed for reproducibility
|
24 |
-
set_seed(42)
|
25 |
-
|
26 |
-
# Paths and constants for the Gradio demo
|
27 |
-
DEFAULT_CFG_PATH = "configs/audio2motion/inference/inference.yaml"
|
28 |
-
DEFAULT_MOTION_MEAN_STD_PATH = "src/datasets/mean.pt"
|
29 |
-
DEFAULT_SILENT_AUDIO_PATH = "src/examples/silent-audio.wav"
|
30 |
-
OUTPUT_DIR = "gradio_output"
|
31 |
-
WEIGHTS_DIR = "pretrain_weights"
|
32 |
-
REPO_ID = "lixinyizju/moda"
|
33 |
-
|
34 |
-
# --- Download Pre-trained Weights from Hugging Face Hub ---
|
35 |
-
def download_weights():
|
36 |
-
"""
|
37 |
-
Downloads pre-trained weights from Hugging Face Hub if they don't exist locally.
|
38 |
-
"""
|
39 |
-
# A simple check for a key file to see if the download is likely complete
|
40 |
-
motion_model_file = os.path.join(WEIGHTS_DIR, "moda", "net-200.pth")
|
41 |
-
|
42 |
-
if not os.path.exists(motion_model_file):
|
43 |
-
print(f"Weights not found locally. Downloading from Hugging Face Hub repo '{REPO_ID}'...")
|
44 |
-
print(f"This may take a while depending on your internet connection.")
|
45 |
-
try:
|
46 |
-
snapshot_download(
|
47 |
-
repo_id=REPO_ID,
|
48 |
-
local_dir=WEIGHTS_DIR,
|
49 |
-
local_dir_use_symlinks=False, # Use False to copy files directly; safer for Windows
|
50 |
-
resume_download=True,
|
51 |
-
)
|
52 |
-
print("Weights downloaded successfully.")
|
53 |
-
except GatedRepoError:
|
54 |
-
raise gr.Error(f"Access to the repository '{REPO_ID}' is gated. Please visit https://huggingface.co/{REPO_ID} to request access.")
|
55 |
-
except (RepositoryNotFoundError, RevisionNotFoundError):
|
56 |
-
raise gr.Error(f"The repository '{REPO_ID}' was not found. Please check the repository ID.")
|
57 |
-
except Exception as e:
|
58 |
-
print(f"An error occurred during download: {e}")
|
59 |
-
raise gr.Error(f"Failed to download models. Please check your internet connection and try again. Error: {e}")
|
60 |
-
else:
|
61 |
-
print(f"Found existing weights at '{WEIGHTS_DIR}'. Skipping download.")
|
62 |
-
|
63 |
-
# --- Audio Conversion Function ---
|
64 |
-
def ensure_wav_format(audio_path):
|
65 |
-
"""
|
66 |
-
Ensures the audio file is in WAV format. If not, converts it to WAV.
|
67 |
-
Returns the path to the WAV file (either original or converted).
|
68 |
-
"""
|
69 |
-
if audio_path is None:
|
70 |
-
return None
|
71 |
-
|
72 |
-
audio_path = Path(audio_path)
|
73 |
-
|
74 |
-
# Check if already WAV
|
75 |
-
if audio_path.suffix.lower() == '.wav':
|
76 |
-
print(f"Audio is already in WAV format: {audio_path}")
|
77 |
-
return str(audio_path)
|
78 |
-
|
79 |
-
# Convert to WAV
|
80 |
-
print(f"Converting audio from {audio_path.suffix} to WAV format...")
|
81 |
-
|
82 |
-
try:
|
83 |
-
# Load the audio file
|
84 |
-
audio = AudioSegment.from_file(audio_path)
|
85 |
-
|
86 |
-
# Create a temporary WAV file
|
87 |
-
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
|
88 |
-
wav_path = tmp_file.name
|
89 |
-
# Export as WAV with higher sampling rate for better quality
|
90 |
-
audio.export(
|
91 |
-
wav_path,
|
92 |
-
format='wav',
|
93 |
-
parameters=["-ar", "24000", "-ac", "1"] # 24kHz, mono for better lip-sync
|
94 |
-
)
|
95 |
-
|
96 |
-
print(f"Audio converted successfully to: {wav_path}")
|
97 |
-
return wav_path
|
98 |
-
|
99 |
-
except Exception as e:
|
100 |
-
print(f"Error converting audio: {e}")
|
101 |
-
raise gr.Error(f"Failed to convert audio file to WAV format. Error: {e}")
|
102 |
-
|
103 |
-
# --- Frame Interpolation Function ---
|
104 |
-
def interpolate_frames(video_path, target_fps=30):
|
105 |
-
"""
|
106 |
-
Interpolates frames in a video to achieve smoother motion.
|
107 |
-
|
108 |
-
Args:
|
109 |
-
video_path: Path to the input video
|
110 |
-
target_fps: Target frames per second
|
111 |
-
|
112 |
-
Returns:
|
113 |
-
Path to the interpolated video
|
114 |
-
"""
|
115 |
-
try:
|
116 |
-
video_path = str(video_path)
|
117 |
-
cap = cv2.VideoCapture(video_path)
|
118 |
-
|
119 |
-
# Get original video properties
|
120 |
-
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
121 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
122 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
123 |
-
|
124 |
-
print(f"Original FPS: {original_fps}, Target FPS: {target_fps}")
|
125 |
-
|
126 |
-
# If target FPS is not higher, return original
|
127 |
-
if original_fps >= target_fps:
|
128 |
-
cap.release()
|
129 |
-
print("Target FPS is not higher than original. Skipping interpolation.")
|
130 |
-
return video_path
|
131 |
-
|
132 |
-
# Read all frames
|
133 |
-
frames = []
|
134 |
-
while True:
|
135 |
-
ret, frame = cap.read()
|
136 |
-
if not ret:
|
137 |
-
break
|
138 |
-
frames.append(frame)
|
139 |
-
cap.release()
|
140 |
-
|
141 |
-
if len(frames) < 2:
|
142 |
-
print("Not enough frames for interpolation.")
|
143 |
-
return video_path
|
144 |
-
|
145 |
-
# Calculate interpolation factor
|
146 |
-
interpolation_factor = int(target_fps / original_fps)
|
147 |
-
interpolated_frames = []
|
148 |
-
|
149 |
-
print(f"Interpolating with factor: {interpolation_factor}")
|
150 |
-
|
151 |
-
# Perform frame interpolation
|
152 |
-
for i in range(len(frames) - 1):
|
153 |
-
interpolated_frames.append(frames[i])
|
154 |
-
|
155 |
-
# Generate intermediate frames
|
156 |
-
for j in range(1, interpolation_factor):
|
157 |
-
alpha = j / interpolation_factor
|
158 |
-
# Use weighted average for simple interpolation
|
159 |
-
interpolated_frame = cv2.addWeighted(
|
160 |
-
frames[i], 1 - alpha,
|
161 |
-
frames[i + 1], alpha,
|
162 |
-
0
|
163 |
-
)
|
164 |
-
interpolated_frames.append(interpolated_frame)
|
165 |
-
|
166 |
-
# Add the last frame
|
167 |
-
interpolated_frames.append(frames[-1])
|
168 |
-
|
169 |
-
# Save the interpolated video
|
170 |
-
output_path = video_path.replace('.mp4', '_interpolated.mp4')
|
171 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
172 |
-
out = cv2.VideoWriter(output_path, fourcc, target_fps, (width, height))
|
173 |
-
|
174 |
-
for frame in interpolated_frames:
|
175 |
-
out.write(frame)
|
176 |
-
out.release()
|
177 |
-
|
178 |
-
print(f"Interpolated video saved to: {output_path}")
|
179 |
-
return output_path
|
180 |
-
|
181 |
-
except Exception as e:
|
182 |
-
print(f"Error during frame interpolation: {e}")
|
183 |
-
return video_path # Return original if interpolation fails
|
184 |
-
|
185 |
-
# --- Initialization ---
|
186 |
-
# Create output directory if it doesn't exist
|
187 |
-
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
188 |
-
|
189 |
-
# Download weights before initializing the pipeline
|
190 |
-
download_weights()
|
191 |
-
|
192 |
-
# Instantiate the pipeline once to avoid reloading models on every request
|
193 |
-
print("Initializing MoDA pipeline...")
|
194 |
-
try:
|
195 |
-
pipeline = LiveVASAPipeline(
|
196 |
-
cfg_path=DEFAULT_CFG_PATH,
|
197 |
-
motion_mean_std_path=DEFAULT_MOTION_MEAN_STD_PATH
|
198 |
-
)
|
199 |
-
print("MoDA pipeline initialized successfully.")
|
200 |
-
except Exception as e:
|
201 |
-
print(f"Error initializing pipeline: {e}")
|
202 |
-
pipeline = None
|
203 |
-
|
204 |
-
# Invert the emo_map for easy lookup from the dropdown value
|
205 |
-
emo_name_to_id = {v: k for k, v in emo_map.items()}
|
206 |
-
|
207 |
-
# --- Core Generation Function ---
|
208 |
-
@spaces.GPU(duration=180) # Increased duration for smoothing and interpolation
|
209 |
-
def generate_motion(source_image_path, driving_audio_path, emotion_name,
|
210 |
-
cfg_scale, smooth_enabled, target_fps,
|
211 |
-
progress=gr.Progress(track_tqdm=True)):
|
212 |
-
"""
|
213 |
-
The main function that takes Gradio inputs and generates the talking head video.
|
214 |
-
|
215 |
-
Args:
|
216 |
-
source_image_path: Path to the source image
|
217 |
-
driving_audio_path: Path to the driving audio
|
218 |
-
emotion_name: Selected emotion
|
219 |
-
cfg_scale: CFG scale for generation
|
220 |
-
smooth_enabled: Whether to enable smoothing
|
221 |
-
target_fps: Target frames per second for interpolation
|
222 |
-
"""
|
223 |
-
if pipeline is None:
|
224 |
-
raise gr.Error("Pipeline failed to initialize. Check the console logs for details.")
|
225 |
-
|
226 |
-
if source_image_path is None:
|
227 |
-
raise gr.Error("Please upload a source image.")
|
228 |
-
if driving_audio_path is None:
|
229 |
-
raise gr.Error("Please upload a driving audio file.")
|
230 |
-
|
231 |
-
start_time = time.time()
|
232 |
-
|
233 |
-
# Ensure audio is in WAV format with optimal sampling rate
|
234 |
-
wav_audio_path = ensure_wav_format(driving_audio_path)
|
235 |
-
temp_wav_created = wav_audio_path != driving_audio_path
|
236 |
-
|
237 |
-
# Create a unique subdirectory for this run
|
238 |
-
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
239 |
-
run_output_dir = os.path.join(OUTPUT_DIR, timestamp)
|
240 |
-
os.makedirs(run_output_dir, exist_ok=True)
|
241 |
-
|
242 |
-
# Get emotion ID from its name
|
243 |
-
emotion_id = emo_name_to_id.get(emotion_name, 8) # Default to 'None' (ID 8) if not found
|
244 |
-
|
245 |
-
print(f"Starting generation with the following parameters:")
|
246 |
-
print(f" Source Image: {source_image_path}")
|
247 |
-
print(f" Driving Audio (original): {driving_audio_path}")
|
248 |
-
print(f" Driving Audio (WAV): {wav_audio_path}")
|
249 |
-
print(f" Emotion: {emotion_name} (ID: {emotion_id})")
|
250 |
-
print(f" CFG Scale: {cfg_scale}")
|
251 |
-
print(f" Smoothing: {smooth_enabled}")
|
252 |
-
print(f" Target FPS: {target_fps}")
|
253 |
-
|
254 |
-
try:
|
255 |
-
# Temporarily disable smoothing if it causes CUDA tensor issues
|
256 |
-
# Check if smooth causes issues and handle gracefully
|
257 |
-
try:
|
258 |
-
# Try with smoothing first
|
259 |
-
result_video_path = pipeline.driven_sample(
|
260 |
-
image_path=source_image_path,
|
261 |
-
audio_path=wav_audio_path,
|
262 |
-
cfg_scale=float(cfg_scale),
|
263 |
-
emo=emotion_id,
|
264 |
-
save_dir=".",
|
265 |
-
smooth=smooth_enabled, # Use the checkbox value
|
266 |
-
silent_audio_path=DEFAULT_SILENT_AUDIO_PATH,
|
267 |
-
)
|
268 |
-
except TypeError as tensor_error:
|
269 |
-
if "can't convert cuda" in str(tensor_error) and smooth_enabled:
|
270 |
-
print("Warning: Smoothing caused CUDA tensor error. Retrying without smoothing...")
|
271 |
-
# Retry without smoothing
|
272 |
-
result_video_path = pipeline.driven_sample(
|
273 |
-
image_path=source_image_path,
|
274 |
-
audio_path=wav_audio_path,
|
275 |
-
cfg_scale=float(cfg_scale),
|
276 |
-
emo=emotion_id,
|
277 |
-
save_dir=".",
|
278 |
-
smooth=False, # Disable smoothing as fallback
|
279 |
-
silent_audio_path=DEFAULT_SILENT_AUDIO_PATH,
|
280 |
-
)
|
281 |
-
print("Generated video without smoothing due to technical limitations.")
|
282 |
-
else:
|
283 |
-
raise tensor_error
|
284 |
-
|
285 |
-
# Apply frame interpolation if requested
|
286 |
-
if target_fps > 24: # Assuming default is around 24 FPS
|
287 |
-
print(f"Applying frame interpolation to achieve {target_fps} FPS...")
|
288 |
-
result_video_path = interpolate_frames(result_video_path, target_fps=target_fps)
|
289 |
-
|
290 |
-
except Exception as e:
|
291 |
-
print(f"An error occurred during video generation: {e}")
|
292 |
-
import traceback
|
293 |
-
traceback.print_exc()
|
294 |
-
raise gr.Error(f"An unexpected error occurred: {str(e)}. Please check the console for details.")
|
295 |
-
finally:
|
296 |
-
# Clean up temporary WAV file if created
|
297 |
-
if temp_wav_created and os.path.exists(wav_audio_path):
|
298 |
-
try:
|
299 |
-
os.remove(wav_audio_path)
|
300 |
-
print(f"Cleaned up temporary WAV file: {wav_audio_path}")
|
301 |
-
except Exception as e:
|
302 |
-
print(f"Warning: Could not delete temporary file {wav_audio_path}: {e}")
|
303 |
-
|
304 |
-
end_time = time.time()
|
305 |
-
processing_time = end_time - start_time
|
306 |
-
|
307 |
-
result_video_path = Path(result_video_path)
|
308 |
-
final_path = result_video_path.with_name(f"final_{result_video_path.stem}{result_video_path.suffix}")
|
309 |
-
|
310 |
-
print(f"Video generated successfully at: {final_path}")
|
311 |
-
print(f"Processing time: {processing_time:.2f} seconds.")
|
312 |
-
|
313 |
-
return final_path
|
314 |
-
|
315 |
-
# --- Gradio UI Definition ---
|
316 |
-
with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 960px !important; margin: 0 auto !important}") as demo:
|
317 |
-
gr.HTML(
|
318 |
-
"""
|
319 |
-
<div align='center'>
|
320 |
-
<h1>MoDA: Multi-modal Diffusion Architecture for Talking Head Generation</h1>
|
321 |
-
<h2 style="color: #4A90E2;">Enhanced Version with Smooth Motion</h2>
|
322 |
-
<p style="display:flex; justify-content: center; gap: 10px;">
|
323 |
-
<a href='https://lixinyyang.github.io/MoDA.github.io/'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
|
324 |
-
<a href='https://arxiv.org/abs/2507.03256'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
|
325 |
-
<a href='https://github.com/lixinyyang/MoDA/'><img src='https://img.shields.io/badge/Code-Github-green'></a>
|
326 |
-
</p>
|
327 |
-
</div>
|
328 |
-
"""
|
329 |
-
)
|
330 |
-
|
331 |
-
with gr.Row(variant="panel"):
|
332 |
-
with gr.Column(scale=1):
|
333 |
-
gr.Markdown("### 📥 Input Settings")
|
334 |
-
|
335 |
-
with gr.Row():
|
336 |
-
source_image = gr.Image(
|
337 |
-
label="Source Image",
|
338 |
-
type="filepath",
|
339 |
-
value="src/examples/reference_images/7.jpg"
|
340 |
-
)
|
341 |
-
|
342 |
-
with gr.Row():
|
343 |
-
driving_audio = gr.Audio(
|
344 |
-
label="Driving Audio",
|
345 |
-
type="filepath",
|
346 |
-
value="src/examples/driving_audios/5.wav"
|
347 |
-
)
|
348 |
-
|
349 |
-
gr.Markdown("### ⚙️ Generation Settings")
|
350 |
-
|
351 |
-
with gr.Row():
|
352 |
-
emotion_dropdown = gr.Dropdown(
|
353 |
-
label="Emotion",
|
354 |
-
choices=list(emo_map.values()),
|
355 |
-
value="Neutral",
|
356 |
-
info="Select an emotion for more natural facial expressions"
|
357 |
-
)
|
358 |
-
|
359 |
-
with gr.Row():
|
360 |
-
cfg_slider = gr.Slider(
|
361 |
-
label="CFG Scale (Lower = Smoother motion)",
|
362 |
-
minimum=0.5,
|
363 |
-
maximum=5.0,
|
364 |
-
step=0.1,
|
365 |
-
value=0.5,
|
366 |
-
info="Lower values produce smoother but less controlled motion"
|
367 |
-
)
|
368 |
-
|
369 |
-
gr.Markdown("### 🎬 Motion Enhancement")
|
370 |
-
|
371 |
-
with gr.Row():
|
372 |
-
smooth_checkbox = gr.Checkbox(
|
373 |
-
label="Enable Smoothing (Experimental)",
|
374 |
-
value=True, # Changed to False due to CUDA issues
|
375 |
-
info="May cause errors on some systems. If errors occur, disable this option."
|
376 |
-
)
|
377 |
-
|
378 |
-
with gr.Row():
|
379 |
-
fps_slider = gr.Slider(
|
380 |
-
label="Target FPS",
|
381 |
-
minimum=24,
|
382 |
-
maximum=60,
|
383 |
-
step=6,
|
384 |
-
value=60,
|
385 |
-
info="Higher FPS for smoother motion (uses frame interpolation)"
|
386 |
-
)
|
387 |
-
|
388 |
-
submit_button = gr.Button("🎥 Generate Video", variant="primary", size="lg")
|
389 |
-
|
390 |
-
with gr.Column(scale=1):
|
391 |
-
gr.Markdown("### 📺 Output")
|
392 |
-
output_video = gr.Video(label="Generated Video")
|
393 |
-
|
394 |
-
# Processing status
|
395 |
-
with gr.Row():
|
396 |
-
gr.Markdown(
|
397 |
-
"""
|
398 |
-
<div style="background-color: #f0f8ff; padding: 10px; border-radius: 5px; margin-top: 10px;">
|
399 |
-
<p style="margin: 0; font-size: 0.9em;">
|
400 |
-
<b>Tips for best results:</b><br>
|
401 |
-
• Use high-quality front-facing images<br>
|
402 |
-
• Clear audio without background noise<br>
|
403 |
-
• Enable smoothing for natural motion<br>
|
404 |
-
• Adjust CFG scale if motion seems stiff
|
405 |
-
</p>
|
406 |
-
</div>
|
407 |
-
"""
|
408 |
-
)
|
409 |
-
|
410 |
-
gr.Markdown(
|
411 |
-
"""
|
412 |
-
---
|
413 |
-
### ⚠️ **Disclaimer**
|
414 |
-
This project is intended for academic research, and we explicitly disclaim any responsibility for user-generated content.
|
415 |
-
Users are solely liable for their actions while using this generative model.
|
416 |
-
|
417 |
-
### 🚀 **Enhancement Features**
|
418 |
-
- **Frame Smoothing**: Reduces jitter and improves transition between frames
|
419 |
-
- **Frame Interpolation**: Increases FPS for smoother motion
|
420 |
-
- **Optimized Audio Processing**: Better lip-sync with 24kHz sampling
|
421 |
-
- **Fine-tuned CFG Scale**: Better control over motion naturalness
|
422 |
-
"""
|
423 |
-
)
|
424 |
-
|
425 |
-
# Examples section
|
426 |
-
gr.Examples(
|
427 |
-
examples=[
|
428 |
-
["src/examples/reference_images/7.jpg", "src/examples/driving_audios/5.wav", "None", 1.0, False, 30],
|
429 |
-
["src/examples/reference_images/7.jpg", "src/examples/driving_audios/5.wav", "Happy", 0.8, False, 30],
|
430 |
-
["src/examples/reference_images/7.jpg", "src/examples/driving_audios/5.wav", "Sad", 1.2, False, 24],
|
431 |
-
],
|
432 |
-
inputs=[source_image, driving_audio, emotion_dropdown, cfg_slider, smooth_checkbox, fps_slider],
|
433 |
-
outputs=output_video,
|
434 |
-
fn=generate_motion,
|
435 |
-
cache_examples=False,
|
436 |
-
label="Example Configurations"
|
437 |
-
)
|
438 |
-
|
439 |
-
submit_button.click(
|
440 |
-
fn=generate_motion,
|
441 |
-
inputs=[source_image, driving_audio, emotion_dropdown, cfg_slider, smooth_checkbox, fps_slider],
|
442 |
-
outputs=output_video
|
443 |
-
)
|
444 |
-
|
445 |
-
if __name__ == "__main__":
|
446 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|