""" Modules, Inculude: - Attention: Attention module used in transformers - MLP: MLP module used in transformers - PositionalEncoding: Positional encoding module used in transformers - ROPE: ROPE module used in transformers """ import os import copy import logging import math import numbers from itertools import repeat from collections import OrderedDict import collections.abc from functools import partial from typing import Any, Callable, Dict, Optional, Set, Tuple, Type, Union, List, Final try: from typing import Literal except ImportError: from typing_extensions import Literal import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from einops import rearrange, repeat from .posemb_layers import apply_rotary_emb try: from apex.normalization.fused_layer_norm import fused_layer_norm_affine has_apex = True except ImportError: has_apex = False try: from apex.normalization.fused_layer_norm import fused_rms_norm_affine, fused_rms_norm has_apex_rmsnorm = True except ImportError: has_apex_rmsnorm = False has_torch_rms_norm = hasattr(F, 'rms_norm') from .config import use_fused_attn import matplotlib.pyplot as plt from sklearn.manifold import TSNE # From PyTorch internals def _ntuple(n): def parse(x): if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): return tuple(x) return tuple(repeat(x, n)) return parse to_1tuple = _ntuple(1) to_2tuple = _ntuple(2) to_3tuple = _ntuple(3) to_4tuple = _ntuple(4) to_ntuple = _ntuple def make_divisible(v, divisor=8, min_value=None, round_limit=.9): min_value = min_value or divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < round_limit * v: new_v += divisor return new_v def extend_tuple(x, n): # pads a tuple to specified n by padding with last value if not isinstance(x, (tuple, list)): x = (x,) else: x = tuple(x) pad_n = n - len(x) if pad_n <= 0: return x[:n] return x + (x[-1],) * pad_n # RMS_NORM def get_autocast_dtype(device: str = 'cuda'): try: return torch.get_autocast_dtype(device) except (AttributeError, TypeError): # dispatch to older device specific fns, only covering cuda/cpu devices here if device == 'cpu': return torch.get_autocast_cpu_dtype() else: assert device == 'cuda' return torch.get_autocast_gpu_dtype() def is_autocast_enabled(device: str = 'cuda'): try: return torch.is_autocast_enabled(device) except TypeError: # dispatch to older device specific fns, only covering cuda/cpu devices here if device == 'cpu': return torch.is_autocast_cpu_enabled() else: assert device == 'cuda' return torch.is_autocast_enabled() # defaults cuda (only cuda on older pytorch) _USE_FAST_NORM = False # defaulting to False for now def is_fast_norm(): return _USE_FAST_NORM def rms_norm( x: torch.Tensor, normalized_shape: List[int], weight: Optional[torch.Tensor] = None, eps: float = 1e-5, ): norm_ndim = len(normalized_shape) v = x.pow(2) if torch.jit.is_scripting(): # ndim = len(x.shape) # dims = list(range(ndim - norm_ndim, ndim)) # this doesn't work on pytorch <= 1.13.x # NOTE -ve dims cause torchscript to crash in some cases, out of options to work around assert norm_ndim == 1 v = torch.mean(v, dim=-1).unsqueeze(-1) # ts crashes with -ve dim + keepdim=True else: dims = tuple(range(-1, -norm_ndim - 1, -1)) v = torch.mean(v, dim=dims, keepdim=True) x = x * torch.rsqrt(v + eps) if weight is not None: x = x * weight return x def fast_rms_norm( x: torch.Tensor, normalized_shape: List[int], weight: Optional[torch.Tensor] = None, eps: float = 1e-5, ) -> torch.Tensor: if torch.jit.is_scripting(): # this must be by itself, cannot merge with has_apex_rmsnorm return rms_norm(x, normalized_shape, weight, eps) if has_apex_rmsnorm: if weight is None: return fused_rms_norm(x, normalized_shape, eps) else: return fused_rms_norm_affine(x, weight, normalized_shape, eps) if is_autocast_enabled(x.device.type): # normally native AMP casts LN inputs to float32 # apex LN does not, this is behaving like Apex dt = get_autocast_dtype(x.device.type) x, weight = x.to(dt), weight.to(dt) with torch.autocast(device_type=x.device.type, enabled=False): if has_torch_rms_norm: x = F.rms_norm(x, normalized_shape, weight, eps) else: x = rms_norm(x, normalized_shape, weight, eps) return x class RMSNorm(nn.Module): """ RMSNorm w/ fast (apex) norm if available """ __constants__ = ['normalized_shape', 'eps', 'elementwise_affine', '_fast_norm'] normalized_shape: Tuple[int, ...] eps: float elementwise_affine: bool _fast_norm: bool def __init__(self, channels, eps=1e-6, elementwise_affine=True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() normalized_shape = channels if isinstance(normalized_shape, numbers.Integral): # mypy error: incompatible types in assignment normalized_shape = (normalized_shape,) # type: ignore[assignment] self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type] self.eps = eps self.elementwise_affine = elementwise_affine self._fast_norm = is_fast_norm() # can't script unless we have these flags here (no globals) if self.elementwise_affine: self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs)) else: self.register_parameter('weight', None) self.reset_parameters() def reset_parameters(self) -> None: if self.elementwise_affine: nn.init.ones_(self.weight) def forward(self, x: torch.Tensor) -> torch.Tensor: # NOTE fast norm fallback needs our rms norm impl, so both paths through here. # Since there is no built-in PyTorch impl, always use APEX RmsNorm if is installed. if self._fast_norm: x = fast_rms_norm(x, self.normalized_shape, self.weight, self.eps) else: x = rms_norm(x, self.normalized_shape, self.weight, self.eps) return x class Mlp(nn.Module): """ MLP module used in transformers """ def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, norm_layer=None, bias=True, drop=0., use_conv=False, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features #bias = to_2tuple(bias) #drop_probs = to_2tuple(drop) bias = [bias, bias] drop_probs = [drop, drop] linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0]) self.act = act_layer() self.drop1 = nn.Dropout(drop_probs[0]) self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1]) self.drop2 = nn.Dropout(drop_probs[1]) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop1(x) x = self.norm(x) x = self.fc2(x) x = self.drop2(x) return x class MMsingle_attention(nn.Module): """ Self-Attention module used in transformers """ fused_attn: Final[bool] def __init__( self, dim: int, num_heads: int = 8, proj_bias: bool = True, attn_drop: float = 0., proj_drop: float = 0., qkv_bias: bool = False, qk_norm: Optional[str] = "rms_norm", **block_kwargs ) -> None: super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divisible by num_heads {num_heads}" self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.fused_attn = use_fused_attn() self.attn_drop = nn.Dropout(attn_drop) if qk_norm is None: self.xs_q_norm = nn.Identity() self.xs_k_norm = nn.Identity() elif qk_norm == "rms_norm": self.xs_q_norm = RMSNorm(self.head_dim, eps=1e-5) self.xs_k_norm = RMSNorm(self.head_dim, eps=1e-5) elif qk_norm == "layer_norm": self.xs_q_norm = nn.LayerNorm(dim, eps=1e-5) self.xs_k_norm = nn.LayerNorm(dim, eps=1e-5) else: raise ValueError(f"Unsupported qk_norm method: {qk_norm}") def forward(self, txt_len,x: torch.Tensor, mask: Optional[torch.Tensor] = None,causal: bool = False,freqs_cis=None,freqs_cis2=None) -> torch.Tensor: B, N1, C = x.shape xs_qkv = x.reshape(B, N1, 3, -1) xs_q, xs_k, xs_v = xs_qkv.permute(2, 0, 1, 3).unbind(0) N2=N1//4 q = xs_q.view(B, N1, self.num_heads, self.head_dim) k = xs_k.view(B, N1, self.num_heads, self.head_dim) v = xs_v.view(B, N1, self.num_heads, self.head_dim).transpose(1, 2) q, k = self.xs_q_norm(q), self.xs_k_norm(k) if freqs_cis is not None or freqs_cis2 is not None: img_q, txt_q = q[:, :txt_len, :, :], q[:, txt_len:, :, :] img_k, txt_k = k[:, :txt_len, :, :], k[:, txt_len:, :, :] img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False) assert ( img_qq.shape == img_q.shape and img_kk.shape == img_k.shape ), f"img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}" img_q, img_k = img_qq.transpose(1, 2), img_kk.transpose(1, 2) if freqs_cis2 is not None: txt_qq, txt_kk = apply_rotary_emb(txt_q, txt_k, freqs_cis2, head_first=False) assert ( txt_qq.shape == txt_q.shape and txt_kk.shape == txt_k.shape ), f"img_kk: {txt_q.shape}, img_q: {txt_q.shape}, img_kk: {txt_kk.shape}, img_k: {txt_k.shape}" txt_q, txt_k = txt_qq, txt_kk q = torch.cat((img_q, txt_q.transpose(1, 2)), dim=2) k = torch.cat((img_k, txt_k.transpose(1, 2)), dim=2) if mask is not None: mask = mask[:, None, None, :].expand(-1, self.num_heads,N1, -1) # (B, num_heads, N, N) mask = mask.to(dtype=q.dtype) if causal: mask2 = torch.ones((N2+3*N2,N2+3*N2), dtype=torch.bool, device=v.device) mask2[-N2-N2:, :N2]= 0 mask2[-N2-N2:-N2,-N2:]=0 mask2[-N2:,-N2-N2:-N2]=0 mask = mask2.to(dtype=torch.bool) if self.fused_attn: x = F.scaled_dot_product_attention( q, k, v, attn_mask=mask, dropout_p=self.attn_drop.p if self.training else 0., ) else: q = q * self.scale attn = q @ k.transpose(-2, -1) if mask is not None: attn = attn.masked_fill(mask, float("-inf")) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N1, -1) return x class MMfour_attention(nn.Module): """ Self-Attention module used in transformers """ fused_attn: Final[bool] def __init__( self, dim: int, num_heads: int = 8, proj_bias: bool = True, attn_drop: float = 0., proj_drop: float = 0., qkv_bias: bool = False, qk_norm: Optional[str] = "rms_norm", **block_kwargs ) -> None: super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divisible by num_heads {num_heads}" self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.fused_attn = use_fused_attn() self.qkv_xs = nn.Linear(dim, dim * 3, bias=qkv_bias) self.qkv_au1 = nn.Linear(dim, dim * 3, bias=qkv_bias) self.qkv_au2 = nn.Linear(dim, dim * 3, bias=qkv_bias) self.qkv_au3 = nn.Linear(dim, dim * 3, bias=qkv_bias) if qk_norm is None: self.xs_q_norm = nn.Identity() self.xs_k_norm = nn.Identity() self.au_q_norm = nn.Identity() self.au_k_norm = nn.Identity() elif qk_norm == "rms_norm": self.xs_q_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True) self.xs_k_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True) self.au_q_norm1 = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True) self.au_k_norm1 = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True) self.au_q_norm2 = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True) self.au_k_norm2 = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True) self.au_q_norm3 = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True) self.au_k_norm3= RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True) elif qk_norm == "layer_norm": self.xs_q_norm = nn.LayerNorm(dim, eps=1e-5) self.xs_k_norm = nn.LayerNorm(dim, eps=1e-5) self.au_q_norm = nn.LayerNorm(dim, eps=1e-5) self.au_k_norm = nn.LayerNorm(dim, eps=1e-5) else: raise ValueError(f"Unsupported qk_norm method: {qk_norm}") self.attn_drop = nn.Dropout(attn_drop) self.xs_proj = nn.Linear(dim, dim, bias=proj_bias) self.au_proj1 = nn.Linear(dim, dim, bias=proj_bias) self.au_proj2 = nn.Linear(dim, dim, bias=proj_bias) self.au_proj3 = nn.Linear(dim, dim, bias=proj_bias) self.xs_proj_drop = nn.Dropout(proj_drop) self.au_proj_drop1 = nn.Dropout(proj_drop) self.au_proj_drop2 = nn.Dropout(proj_drop) self.au_proj_drop3 = nn.Dropout(proj_drop) def forward(self, x: torch.Tensor, y1: torch.Tensor, y2: torch.Tensor,y3: torch.Tensor,mask: Optional[torch.Tensor] = None,causal=False,freqs_cis=None,freqs_cis2=None) -> Tuple[torch.Tensor, torch.Tensor]: B, N1, C = x.shape xs_qkv = self.qkv_xs(x).reshape(B, N1, 3, -1) xs_q, xs_k, xs_v = xs_qkv.permute(2, 0, 1, 3).unbind(0) B,N2,C= y1.shape au_qkv1 = self.qkv_au1(y1).reshape(B, N2, 3, -1) au_q1, au_k1, au_v1 = au_qkv1.permute(2, 0, 1, 3).unbind(0) B,N3,C= y2.shape au_qkv2 = self.qkv_au2(y2).reshape(B, N3, 3, -1) au_q2, au_k2, au_v2 = au_qkv2.permute(2, 0, 1, 3).unbind(0) B,N4,C= y3.shape au_qkv3 = self.qkv_au3(y3).reshape(B, N4, 3, -1) au_q3, au_k3, au_v3 = au_qkv3.permute(2, 0, 1, 3).unbind(0) M=N2//N1 xs_q = xs_q.view(B, N1, self.num_heads, self.head_dim) xs_k = xs_k.view(B, N1, self.num_heads, self.head_dim) xs_v = xs_v.view(B, N1, self.num_heads, self.head_dim).transpose(1, 2) xs_q, xs_k = self.xs_q_norm(xs_q), self.xs_k_norm(xs_k) if freqs_cis is not None: img_qq, img_kk = apply_rotary_emb(xs_q, xs_k, freqs_cis, head_first=False) assert ( img_qq.shape == xs_q.shape and img_kk.shape == xs_k.shape ), f"img_kk: {img_qq.shape}, img_q: {xs_q.shape}, img_kk: {img_kk.shape}, img_k: {xs_k.shape}" xs_q, xs_k = img_qq.transpose(1, 2), img_kk.transpose(1, 2) au_q1=au_q1.view(B, N2, self.num_heads, self.head_dim) au_k1=au_k1.view(B, N2, self.num_heads, self.head_dim) au_v1=au_v1.view(B, N2, self.num_heads, self.head_dim).transpose(1, 2) au_q1, au_k1 = self.au_q_norm1(au_q1), self.au_k_norm1(au_k1) au_q2=au_q2.view(B, N3, self.num_heads, self.head_dim) au_k2=au_k2.view(B, N3, self.num_heads, self.head_dim) au_v2=au_v2.view(B, N3, self.num_heads, self.head_dim).transpose(1, 2) au_q2, au_k2 = self.au_q_norm2(au_q2), self.au_k_norm2(au_k2) au_q3=au_q3.view(B, N4, self.num_heads, self.head_dim) au_k3=au_k3.view(B, N4, self.num_heads, self.head_dim) au_v3=au_v3.view(B, N4, self.num_heads, self.head_dim).transpose(1, 2) au_q3, au_k3 = self.au_q_norm3(au_q3), self.au_k_norm3(au_k3) if freqs_cis2 is not None: au_q11, au_k11 = apply_rotary_emb(au_q1, au_k1, freqs_cis2, head_first=False) au_q1, au_k1 = au_q11, au_k11 assert ( au_q11.shape == au_q1.shape and au_k11.shape == au_k1.shape ), f"au_q11: {au_q11.shape}, img_q: {au_q1.shape}, img_kk: {au_k11.shape}, img_k: {au_k1.shape}" q = torch.cat((xs_q, au_q1.transpose(1, 2),au_q2.transpose(1, 2),au_q3.transpose(1, 2)), dim=2) k = torch.cat((xs_k, au_k1.transpose(1, 2),au_k2.transpose(1, 2),au_k3.transpose(1, 2)), dim=2) v = torch.cat((xs_v, au_v1,au_v2,au_v3), dim=2) if mask is not None: # mask = mask[:, None, :] # (B, 1, N) mask2 = mask[:, None, :].expand(-1, self.num_heads,-1) mask = mask[:, None, None, :].expand(-1, self.num_heads,M, -1) mask = rearrange(mask, "b n m d -> b n (m d)") att_mask=torch.cat((mask2,mask),dim=-1) att_mask=att_mask[:,:,None,:].expand(-1, -1,N1+N2, -1) mask = att_mask.to(dtype=q.dtype) if causal: mask2 = torch.ones((N1+3*N2,N1+3*N2), dtype=torch.bool, device=v.device) mask2[-N3-N4:, :N1] = 0 mask2[-N1-N1:-N1,-N1:]=0 mask2[-N1:,-N1-N1:-N1]=0 mask = mask2.to(dtype=torch.bool) if self.fused_attn: # print("yesyes") x = F.scaled_dot_product_attention( q, k, v, attn_mask=mask, dropout_p=self.attn_drop.p if self.training else 0., ) else: q = q * self.scale attn = q @ k.transpose(-2, -1) if mask is not None: attn = attn.masked_fill(mask, float("-inf")) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N1+N2+N3+N4, C) xs,au1,au2,au3=x[:,:N1],x[:,N1:N1+N2],x[:,N1+N2:N1+N2+N3],x[:,N1+N2+N3:N1+N2+N3+N4] xs = self.xs_proj(xs) xs = self.xs_proj_drop(xs) au1 = self.au_proj1(au1) au1 = self.au_proj_drop1(au1) au2 = self.au_proj2(au2) au2 = self.au_proj_drop2(au2) au3 = self.au_proj3(au3) au3 = self.au_proj_drop3(au3) return xs,au1,au2,au3 class MMdual_attention(nn.Module): """ Self-Attention module used in transformers """ fused_attn: Final[bool] def __init__( self, dim: int, num_heads: int = 8, proj_bias: bool = True, attn_drop: float = 0., proj_drop: float = 0., qkv_bias: bool = False, qk_norm: Optional[str] = "rms_norm", **block_kwargs ) -> None: super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divisible by num_heads {num_heads}" self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.fused_attn = use_fused_attn() self.qkv_xs = nn.Linear(dim, dim * 3, bias=qkv_bias) self.qkv_au = nn.Linear(dim, dim * 3, bias=qkv_bias) if qk_norm is None: self.xs_q_norm = nn.Identity() self.xs_k_norm = nn.Identity() self.au_q_norm = nn.Identity() self.au_k_norm = nn.Identity() elif qk_norm == "rms_norm": self.xs_q_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True) self.xs_k_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True) self.au_q_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True) self.au_k_norm = RMSNorm(self.head_dim, eps=1e-5,elementwise_affine=True) elif qk_norm == "layer_norm": self.xs_q_norm = nn.LayerNorm(dim, eps=1e-5) self.xs_k_norm = nn.LayerNorm(dim, eps=1e-5) self.au_q_norm = nn.LayerNorm(dim, eps=1e-5) self.au_k_norm = nn.LayerNorm(dim, eps=1e-5) else: raise ValueError(f"Unsupported qk_norm method: {qk_norm}") self.attn_drop = nn.Dropout(attn_drop) self.xs_proj = nn.Linear(dim, dim, bias=proj_bias) self.au_proj = nn.Linear(dim, dim, bias=proj_bias) self.xs_proj_drop = nn.Dropout(proj_drop) self.au_proj_drop = nn.Dropout(proj_drop) def forward(self, seq_len,x: torch.Tensor, y: torch.Tensor, mask: Optional[torch.Tensor] = None,causal=False,freqs_cis=None,freqs_cis2=None) -> Tuple[torch.Tensor, torch.Tensor]: B, N1, C = x.shape xs_qkv = self.qkv_xs(x).reshape(B, N1, 3, -1) xs_q, xs_k, xs_v = xs_qkv.permute(2, 0, 1, 3).unbind(0) B,N2,C= y.shape au_qkv = self.qkv_au(y).reshape(B, N2, 3, -1) au_q, au_k, au_v = au_qkv.permute(2, 0, 1, 3).unbind(0) xs_q = xs_q.view(B, N1, self.num_heads, self.head_dim) xs_k = xs_k.view(B, N1, self.num_heads, self.head_dim) xs_v = xs_v.view(B, N1, self.num_heads, self.head_dim).transpose(1, 2) xs_q, xs_k = self.xs_q_norm(xs_q), self.xs_k_norm(xs_k) if freqs_cis is not None: img_qq, img_kk = apply_rotary_emb(xs_q, xs_k, freqs_cis, head_first=False) assert ( img_qq.shape == xs_q.shape and img_kk.shape == xs_k.shape ), f"img_kk: {img_qq.shape}, img_q: {xs_q.shape}, img_kk: {img_kk.shape}, img_k: {xs_k.shape}" xs_q, xs_k = img_qq.transpose(1, 2), img_kk.transpose(1, 2) au_q=au_q.view(B, N2, self.num_heads, self.head_dim) au_k=au_k.view(B, N2, self.num_heads, self.head_dim) au_v=au_v.view(B, N2, self.num_heads, self.head_dim).transpose(1, 2) au_q, au_k = self.au_q_norm(au_q), self.au_k_norm(au_k) if freqs_cis2 is not None: img_qq, img_kk = apply_rotary_emb(au_q, au_k, freqs_cis2, head_first=False) assert ( img_qq.shape == au_q.shape and img_kk.shape == au_k.shape ), f"img_kk: {img_qq.shape}, img_q: {xs_q.shape}, img_kk: {img_kk.shape}, img_k: {xs_k.shape}" au_q, au_k = img_qq, img_kk q = torch.cat((xs_q, au_q.transpose(1, 2)), dim=2) k = torch.cat((xs_k, au_k.transpose(1, 2)), dim=2) v = torch.cat((xs_v, au_v), dim=2) if mask is not None: # mask = mask[:, None, :] # (B, 1, N) mask2 = mask[:, None, :].expand(-1, self.num_heads,-1) mask = mask[:, None, None, :].expand(-1, self.num_heads,M, -1) mask = rearrange(mask, "b n m d -> b n (m d)") att_mask=torch.cat((mask2,mask),dim=-1) att_mask=att_mask[:,:,None,:].expand(-1, -1,N1+N2, -1) mask = att_mask.to(dtype=q.dtype) if causal: mask2 = torch.ones((N1+3*N1,N1+3*N1), dtype=torch.bool, device=v.device) mask2[-N1-N1:, :N1] = 0 mask2[-N1-N1:-N1,-N1:]=0 mask2[-N1:,-N1-N1:-N1]=0 mask = mask2.to(dtype=torch.bool) if self.fused_attn: x = F.scaled_dot_product_attention( q, k, v, attn_mask=mask, dropout_p=self.attn_drop.p if self.training else 0., ) else: q = q * self.scale attn = q @ k.transpose(-2, -1) if mask is not None: attn = attn.masked_fill(mask, float("-inf")) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N1+N2, C) xs,au=x[:,:N1],x[:,N1:] xs = self.xs_proj(xs) xs = self.xs_proj_drop(xs) au = self.au_proj(au) au = self.au_proj_drop(au) return xs,au class SelfAttention(nn.Module): """ Self-Attention module used in transformers """ fused_attn: Final[bool] def __init__( self, dim: int, num_heads: int = 8, proj_bias: bool = True, attn_drop: float = 0., proj_drop: float = 0., qkv_bias: bool = False, qk_norm: Optional[str] = "rms_norm", **block_kwargs ) -> None: super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divisible by num_heads {num_heads}" self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.fused_attn = use_fused_attn() self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) if qk_norm is None: self.q_norm = nn.Identity() self.k_norm = nn.Identity() elif qk_norm == "rms_norm": self.q_norm = RMSNorm(dim, eps=1e-5) self.k_norm = RMSNorm(dim, eps=1e-5) elif qk_norm == "layer_norm": self.q_norm = nn.LayerNorm(dim, eps=1e-5) self.k_norm = nn.LayerNorm(dim, eps=1e-5) else: raise ValueError(f"Unsupported qk_norm method: {qk_norm}") self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None,freqs_cis=None) -> torch.Tensor: B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, -1).permute(2, 0, 1, 3) q, k, v = qkv.unbind(0) q, k = self.q_norm(q), self.k_norm(k) q = q.view(B, N, self.num_heads, self.head_dim) k = k.view(B, N, self.num_heads, self.head_dim) v = v.view(B, N, self.num_heads, self.head_dim).transpose(1, 2) if freqs_cis is not None: img_qq, img_kk = apply_rotary_emb(q, k, freqs_cis, head_first=False) assert ( img_qq.shape == q.shape and img_kk.shape == k.shape ), f"img_kk: {img_qq.shape}, img_q: {q.shape}, img_kk: {img_kk.shape}, img_k: {k.shape}" q, k = img_qq, img_kk if mask is not None: mask = mask[:, None, None, :].expand(-1, self.num_heads,N, -1) # (B, num_heads, N, N) mask = mask.to(dtype=q.dtype) if self.fused_attn: x = F.scaled_dot_product_attention( q.transpose(1, 2), k.transpose(1, 2), v, attn_mask=mask, dropout_p=self.attn_drop.p if self.training else 0., ) else: q = q * self.scale attn = q @ k.transpose(-2, -1) if mask is not None: attn = attn.masked_fill(mask, float("-inf")) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class CrossAttention(nn.Module): """ Cross-Attention module used in transformers """ fused_attn: Final[bool] def __init__( self, dim: int, num_heads: int = 8, proj_bias: bool = True, attn_drop: float = 0., proj_drop: float = 0., qkv_bias: bool = False, qk_norm: Optional[str] = "rms_norm", **block_kwargs ) -> None: super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divisible by num_heads {num_heads}" self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.fused_attn = use_fused_attn() self.to_q = nn.Linear(dim, dim, bias=qkv_bias) self.to_kv = nn.Linear(dim, dim * 2, bias=qkv_bias) self.window_size = int(block_kwargs.get('window_size', 1)) if self.window_size > 1: self.indices = ( torch.arange(self.window_size) - (self.window_size - 1) // 2 ).unsqueeze(0) # 1, window_size, [-3, -2, -1, 0, 1, 2, 3] norm_dim = dim else: self.indices = None norm_dim = self.head_dim if qk_norm is None: self.q_norm = nn.Identity() self.k_norm = nn.Identity() elif qk_norm == "rms_norm": self.q_norm = RMSNorm(norm_dim, eps=1e-5) self.k_norm = RMSNorm(norm_dim, eps=1e-5) elif qk_norm == "layer_norm": self.q_norm = nn.LayerNorm(norm_dim, eps=1e-5) self.k_norm = nn.LayerNorm(norm_dim, eps=1e-5) else: raise ValueError(f"Unsupported qk_norm method: {qk_norm}") self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x: torch.Tensor, y: torch.Tensor,mask: Optional[torch.Tensor] = None) -> torch.Tensor: B, N, C = x.shape ''' if self.window_size > 1: indices = (torch.arange(N).unsqueeze(1) + self.indices).to(x.device) # N x window_size indices = indices.clamp(0, N - 1) attn_mask = torch.zeros(N, y.shape[1], dtype=x.dtype, device=x.device) # N x N attn_mask = torch.scatter(attn_mask, dim=1, index=indices, value=1) # N x N attn_mask = attn_mask.unsqueeze(0).unsqueeze(-1) # 1 x N x N x 1 attn_mask = attn_mask.expand(-1, -1, -1, M) # 1 x N x N x M attn_mask = attn_mask.reshape(1, N, -1) # 1 x N x (NxM) #x = rearrange(x, "b n c -> (b n) 1 c") y = rearrange(y, "b n m d -> b (n m) d") q = self.to_q(x) q = self.q_norm(q).reshape(-1, N, self.num_heads, self.head_dim).transpose(1, 2) kv = self.to_kv(y).reshape(-1, N*M, 2, self.num_heads*self.head_dim).permute(2, 0, 1, 3) k, v = kv.unbind(0) k = self.k_norm(k) k = k.view(-1, N*M, self.num_heads, self.head_dim).transpose(1, 2) v = v.view(-1, N*M, self.num_heads, self.head_dim).transpose(1, 2) else: ''' ''' # wsize = 1 attn_mask = None x = rearrange(x, "b n c -> (b n) 1 c") y = rearrange(y, "b n m d -> (b n) m d") q = self.to_q(x).reshape(-1, 1, self.num_heads, self.head_dim).permute(0, 2, 1, 3) kv = self.to_kv(y).reshape(-1, M, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) k, v = kv.unbind(0) q, k = self.q_norm(q), self.k_norm(k) ''' # wsize=all # attn_mask = None if y.shape==4: M = y.shape[2] y = rearrange(y, "b n m d -> b (n m) d") else: N2 = y.shape[1] M=N2//N q = self.to_q(x).reshape(B, -1, self.num_heads, self.head_dim).permute(0, 2, 1, 3) kv = self.to_kv(y).reshape(B, -1, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) k, v = kv.unbind(0) q, k = self.q_norm(q), self.k_norm(k) if mask is not None: mask = mask[:, None, None, :].expand(-1, self.num_heads, M, -1) # (B, num_heads, N, N) mask = rearrange(mask, "b n m d -> b n (m d)") mask=mask[:, :, None, :].expand(-1, -1, N, -1) mask = mask.to(dtype=q.dtype) # mask = mask.masked_fill(mask == 0, float("-inf")) if self.fused_attn: x = F.scaled_dot_product_attention( q, k, v, attn_mask=mask, dropout_p=self.attn_drop.p if self.training else 0., ) else: q = q * self.scale attn = q @ k.transpose(-2, -1) # B x N x (N*M) attn = attn.masked_fill(mask == 0, float(-1e-9)) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v # B, H, N, C//H x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x