Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import spaces | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import random | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
import torch | |
from transformers import pipeline as transformers_pipeline | |
import re | |
# ------------------------------------------------------------ | |
# DEVICE SETUP | |
# ------------------------------------------------------------ | |
# Prefer GPU when the Space provides it, otherwise CPU | |
# `@spaces.GPU` takes care of binding the call itself, but we still | |
# need a device handle for manual ops. | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# ------------------------------------------------------------ | |
# STABLE DIFFUSION XL PIPELINE | |
# ------------------------------------------------------------ | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"votepurchase/waiNSFWIllustrious_v120", | |
torch_dtype=torch.float16, | |
variant="fp16", | |
use_safetensors=True, | |
) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.to(device) | |
# Force important sub-modules to fp16 for VRAM efficiency (GPU) or | |
# reduce RAM (CPU). The model itself already sits in fp16, we just | |
# mirror that for sub-components explicitly to avoid silent fp32 | |
# promotions that eat memory on ZeroGPU. | |
for sub in (pipe.text_encoder, pipe.text_encoder_2, pipe.vae, pipe.unet): | |
sub.to(torch.float16) | |
# ------------------------------------------------------------ | |
# LIGHTWEIGHT KOR→ENG TRANSLATOR (CPU-ONLY) | |
# ------------------------------------------------------------ | |
# * Hugging Face Spaces occasionally trips over the full MarianMT | |
# weights on ZeroGPU, resulting in the _untyped_storage_new_register | |
# error you just saw. We wrap initialisation in try/except and fall | |
# back to an identity function if the model cannot be loaded. | |
# * If you need translation and have a custom HF token, set the env | |
# HF_API_TOKEN so the smaller *small100* model can be pulled. | |
# | |
translator = None # default stub → "no translator" | |
try: | |
# First try the 60 MB Marian model. | |
translator = transformers_pipeline( | |
"translation", | |
model="Helsinki-NLP/opus-mt-ko-en", | |
device=-1, # force CPU so CUDA never initialises in the main proc | |
) | |
except Exception as marian_err: | |
print("[WARN] MarianMT load failed →", marian_err) | |
# Second chance: use compact multilingual SMaLL-100 (≈35 MB). | |
try: | |
translator = transformers_pipeline( | |
"translation", | |
model="alirezamsh/small100", | |
src_lang="ko_Kore", | |
tgt_lang="en_XX", | |
device=-1, | |
) | |
except Exception as small_err: | |
print("[WARN] SMaLL-100 load failed →", small_err) | |
# Final fallback: identity – no translation, but the app still runs. | |
translator = None | |
korean_regex = re.compile(r"[\uac00-\ud7af]+") | |
def maybe_translate(text: str) -> str: | |
"""Translate Korean → English if Korean chars present and translator ready.""" | |
if translator is not None and korean_regex.search(text): | |
try: | |
out = translator(text, max_length=256, clean_up_tokenization_spaces=True) | |
return out[0]["translation_text"] | |
except Exception as e: | |
print("[WARN] Translation failed at runtime →", e) | |
return text | |
# ------------------------------------------------------------ | |
# SDXL INFERENCE WRAPPER | |
# ------------------------------------------------------------ | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1216 | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
prompt = maybe_translate(prompt) | |
negative_prompt = maybe_translate(negative_prompt) | |
if len(prompt.split()) > 60: | |
print("[WARN] Prompt >60 words — CLIP may truncate it.") | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
try: | |
output_image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return output_image | |
except RuntimeError as e: | |
print(f"[ERROR] Diffusion failed → {e}") | |
return Image.new("RGB", (width, height), color=(0, 0, 0)) | |
# ------------------------------------------------------------ | |
# UI LAYOUT + THEME (Pastel Lavender Background) | |
# ------------------------------------------------------------ | |
css = """ | |
body {background: #f2f1f7; color: #222; font-family: 'Noto Sans', sans-serif;} | |
#col-container {margin: 0 auto; max-width: 640px;} | |
.gr-button {background: #7fbdf6; color: #fff; border-radius: 8px;} | |
#prompt-box textarea {font-size: 1.1rem; height: 3rem; background: #fff; color: #222;} | |
""" | |
author_note = ( | |
"**ℹ️ Automatic translation** — Korean prompts are translated to English " | |
"only if translation weights could be loaded. If not, Korean input will be " | |
"sent unchanged." | |
) | |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
gr.Markdown( | |
f""" | |
## 🖌️ Stable Diffusion XL Playground | |
{author_note} | |
""" | |
) | |
with gr.Column(elem_id="col-container"): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
elem_id="prompt-box", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt (Korean or English, 60 words max)", | |
) | |
run_button = gr.Button("Generate", scale=0) | |
result = gr.Image(label="", show_label=False) | |
examples = gr.Examples( | |
examples=[ | |
["Her skirt rose a little higher with each gentle push, a soft blush of blush spreading across her cheeks as she felt the satisfying warmth of his breath on her cheek."], | |
["a girl in a school uniform having her skirt pulled up by a boy, and then being fucked"], | |
["Moody mature anime scene of two lovers fuck under neon rain, sensual atmosphere"], | |
["Moody mature anime scene of two lovers kissing under neon rain, sensual atmosphere"], | |
["The girl sits on the boy's lap by the window, his hands resting on her waist. She is unbuttoning his shirt, her expression focused and intense."], | |
["A girl with long, black hair is sleeping on her desk in the classroom. Her skirt has ridden up, revealing her thighs, and a trail of drool escapes her slightly parted lips."], | |
[""The waves rolled gently, a slow, sweet kiss of the lip, a slow, slow build of anticipation as their toes bumped gently – a slow, sweet kiss of the lip, a promise of more to come.""], | |
], | |
inputs=[prompt], | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
value="text, talk bubble, low quality, watermark, signature", | |
) | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
with gr.Row(): | |
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7) | |
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=28, step=1, value=28) | |
run_button.click( | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=[result], | |
) | |
demo.queue().launch() | |