retwpay commited on
Commit
1bc26f8
·
verified ·
1 Parent(s): 955ffae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +65 -73
app.py CHANGED
@@ -1,92 +1,96 @@
 
1
  import gradio as gr
2
  import numpy as np
 
 
3
  import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
 
 
 
 
 
 
 
11
 
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
 
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
 
 
 
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
 
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
 
 
 
 
 
 
52
 
53
 
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
  css = """
61
  #col-container {
62
  margin: 0 auto;
63
- max-width: 640px;
64
  }
65
  """
66
 
67
  with gr.Blocks(css=css) as demo:
 
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
 
71
  with gr.Row():
72
  prompt = gr.Text(
73
  label="Prompt",
74
  show_label=False,
75
  max_lines=1,
76
- placeholder="Enter your prompt",
77
  container=False,
78
  )
79
 
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
 
82
  result = gr.Image(label="Result", show_label=False)
83
-
84
  with gr.Accordion("Advanced Settings", open=False):
 
85
  negative_prompt = gr.Text(
86
  label="Negative prompt",
87
  max_lines=1,
88
  placeholder="Enter a negative prompt",
89
- visible=False,
90
  )
91
 
92
  seed = gr.Slider(
@@ -105,7 +109,7 @@ with gr.Blocks(css=css) as demo:
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
  step=32,
108
- value=1024, # Replace with defaults that work for your model
109
  )
110
 
111
  height = gr.Slider(
@@ -113,42 +117,30 @@ with gr.Blocks(css=css) as demo:
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
- value=1024, # Replace with defaults that work for your model
117
  )
118
 
119
  with gr.Row():
120
  guidance_scale = gr.Slider(
121
  label="Guidance scale",
122
  minimum=0.0,
123
- maximum=10.0,
124
  step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
  )
127
 
128
  num_inference_steps = gr.Slider(
129
  label="Number of inference steps",
130
  minimum=1,
131
- maximum=50,
132
  step=1,
133
- value=2, # Replace with defaults that work for your model
134
  )
135
 
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
  fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
+ import spaces
2
  import gradio as gr
3
  import numpy as np
4
+ import PIL.Image
5
+ from PIL import Image
6
  import random
7
+ from diffusers import StableDiffusionXLPipeline
8
+ from diffusers import EulerAncestralDiscreteScheduler
 
9
  import torch
10
 
11
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+
13
+ # Make sure to use torch.float16 consistently throughout the pipeline
14
+ pipe = StableDiffusionXLPipeline.from_pretrained(
15
+ "votepurchase/pornmasterPro_noobV3VAE",
16
+ torch_dtype=torch.float16,
17
+ variant="fp16", # Explicitly use fp16 variant
18
+ use_safetensors=True # Use safetensors if available
19
+ )
20
 
21
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
22
+ pipe.to(device)
 
 
23
 
24
+ # Force all components to use the same dtype
25
+ pipe.text_encoder.to(torch.float16)
26
+ pipe.text_encoder_2.to(torch.float16)
27
+ pipe.vae.to(torch.float16)
28
+ pipe.unet.to(torch.float16)
29
 
30
  MAX_SEED = np.iinfo(np.int32).max
31
+ MAX_IMAGE_SIZE = 1216
32
+
33
+ @spaces.GPU
34
+ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
35
+ # Check and truncate prompt if too long (CLIP can only handle 77 tokens)
36
+ if len(prompt.split()) > 60: # Rough estimate to avoid exceeding token limit
37
+ print("Warning: Prompt may be too long and will be truncated by the model")
38
+
 
 
 
 
 
 
 
39
  if randomize_seed:
40
  seed = random.randint(0, MAX_SEED)
41
 
42
+ generator = torch.Generator(device=device).manual_seed(seed)
43
+
44
+ try:
45
+ output_image = pipe(
46
+ prompt=prompt,
47
+ negative_prompt=negative_prompt,
48
+ guidance_scale=guidance_scale,
49
+ num_inference_steps=num_inference_steps,
50
+ width=width,
51
+ height=height,
52
+ generator=generator
53
+ ).images[0]
54
+
55
+ return output_image
56
+ except RuntimeError as e:
57
+ print(f"Error during generation: {e}")
58
+ # Return a blank image with error message
59
+ error_img = Image.new('RGB', (width, height), color=(0, 0, 0))
60
+ return error_img
61
 
62
 
 
 
 
 
 
 
63
  css = """
64
  #col-container {
65
  margin: 0 auto;
66
+ max-width: 520px;
67
  }
68
  """
69
 
70
  with gr.Blocks(css=css) as demo:
71
+
72
  with gr.Column(elem_id="col-container"):
 
73
 
74
  with gr.Row():
75
  prompt = gr.Text(
76
  label="Prompt",
77
  show_label=False,
78
  max_lines=1,
79
+ placeholder="Enter your prompt (keep it under 60 words for best results)",
80
  container=False,
81
  )
82
 
83
+ run_button = gr.Button("Run", scale=0)
84
 
85
  result = gr.Image(label="Result", show_label=False)
86
+
87
  with gr.Accordion("Advanced Settings", open=False):
88
+
89
  negative_prompt = gr.Text(
90
  label="Negative prompt",
91
  max_lines=1,
92
  placeholder="Enter a negative prompt",
93
+ value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
94
  )
95
 
96
  seed = gr.Slider(
 
109
  minimum=256,
110
  maximum=MAX_IMAGE_SIZE,
111
  step=32,
112
+ value=1024,
113
  )
114
 
115
  height = gr.Slider(
 
117
  minimum=256,
118
  maximum=MAX_IMAGE_SIZE,
119
  step=32,
120
+ value=1024,
121
  )
122
 
123
  with gr.Row():
124
  guidance_scale = gr.Slider(
125
  label="Guidance scale",
126
  minimum=0.0,
127
+ maximum=20.0,
128
  step=0.1,
129
+ value=7,
130
  )
131
 
132
  num_inference_steps = gr.Slider(
133
  label="Number of inference steps",
134
  minimum=1,
135
+ maximum=28,
136
  step=1,
137
+ value=28,
138
  )
139
 
140
+ run_button.click(
 
 
141
  fn=infer,
142
+ inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
+ outputs=[result]
 
 
 
 
 
 
 
 
 
144
  )
145
 
146
+ demo.queue().launch()