Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,971 Bytes
ba7cb71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import json
import logging
import math
import os
import random
import sys
import tempfile
from dataclasses import dataclass
from http import HTTPStatus
from typing import Optional, Union
import dashscope
import torch
from PIL import Image
try:
from flash_attn import flash_attn_varlen_func
FLASH_VER = 2
except ModuleNotFoundError:
flash_attn_varlen_func = None # in compatible with CPU machines
FLASH_VER = None
from .system_prompt import *
DEFAULT_SYS_PROMPTS = {
"t2v-A14B": {
"zh": T2V_A14B_ZH_SYS_PROMPT,
"en": T2V_A14B_EN_SYS_PROMPT,
},
"i2v-A14B": {
"zh": I2V_A14B_ZH_SYS_PROMPT,
"en": I2V_A14B_EN_SYS_PROMPT,
"empty": {
"zh": I2V_A14B_EMPTY_ZH_SYS_PROMPT,
"en": I2V_A14B_EMPTY_EN_SYS_PROMPT,
}
},
"ti2v-5B": {
"t2v": {
"zh": T2V_A14B_ZH_SYS_PROMPT,
"en": T2V_A14B_EN_SYS_PROMPT,
},
"i2v": {
"zh": I2V_A14B_ZH_SYS_PROMPT,
"en": I2V_A14B_EN_SYS_PROMPT,
}
},
}
@dataclass
class PromptOutput(object):
status: bool
prompt: str
seed: int
system_prompt: str
message: str
def add_custom_field(self, key: str, value) -> None:
self.__setattr__(key, value)
class PromptExpander:
def __init__(self, model_name, task, is_vl=False, device=0, **kwargs):
self.model_name = model_name
self.task = task
self.is_vl = is_vl
self.device = device
def extend_with_img(self,
prompt,
system_prompt,
image=None,
seed=-1,
*args,
**kwargs):
pass
def extend(self, prompt, system_prompt, seed=-1, *args, **kwargs):
pass
def decide_system_prompt(self, tar_lang="zh", prompt=None):
assert self.task is not None
if "ti2v" in self.task:
if self.is_vl:
return DEFAULT_SYS_PROMPTS[self.task]["i2v"][tar_lang]
else:
return DEFAULT_SYS_PROMPTS[self.task]["t2v"][tar_lang]
if "i2v" in self.task and len(prompt) == 0:
return DEFAULT_SYS_PROMPTS[self.task]["empty"][tar_lang]
return DEFAULT_SYS_PROMPTS[self.task][tar_lang]
def __call__(self,
prompt,
system_prompt=None,
tar_lang="zh",
image=None,
seed=-1,
*args,
**kwargs):
if system_prompt is None:
system_prompt = self.decide_system_prompt(
tar_lang=tar_lang, prompt=prompt)
if seed < 0:
seed = random.randint(0, sys.maxsize)
if image is not None and self.is_vl:
return self.extend_with_img(
prompt, system_prompt, image=image, seed=seed, *args, **kwargs)
elif not self.is_vl:
return self.extend(prompt, system_prompt, seed, *args, **kwargs)
else:
raise NotImplementedError
class DashScopePromptExpander(PromptExpander):
def __init__(self,
api_key=None,
model_name=None,
task=None,
max_image_size=512 * 512,
retry_times=4,
is_vl=False,
**kwargs):
'''
Args:
api_key: The API key for Dash Scope authentication and access to related services.
model_name: Model name, 'qwen-plus' for extending prompts, 'qwen-vl-max' for extending prompt-images.
task: Task name. This is required to determine the default system prompt.
max_image_size: The maximum size of the image; unit unspecified (e.g., pixels, KB). Please specify the unit based on actual usage.
retry_times: Number of retry attempts in case of request failure.
is_vl: A flag indicating whether the task involves visual-language processing.
**kwargs: Additional keyword arguments that can be passed to the function or method.
'''
if model_name is None:
model_name = 'qwen-plus' if not is_vl else 'qwen-vl-max'
super().__init__(model_name, task, is_vl, **kwargs)
if api_key is not None:
dashscope.api_key = api_key
elif 'DASH_API_KEY' in os.environ and os.environ[
'DASH_API_KEY'] is not None:
dashscope.api_key = os.environ['DASH_API_KEY']
else:
raise ValueError("DASH_API_KEY is not set")
if 'DASH_API_URL' in os.environ and os.environ[
'DASH_API_URL'] is not None:
dashscope.base_http_api_url = os.environ['DASH_API_URL']
else:
dashscope.base_http_api_url = 'https://dashscope.aliyuncs.com/api/v1'
self.api_key = api_key
self.max_image_size = max_image_size
self.model = model_name
self.retry_times = retry_times
def extend(self, prompt, system_prompt, seed=-1, *args, **kwargs):
messages = [{
'role': 'system',
'content': system_prompt
}, {
'role': 'user',
'content': prompt
}]
exception = None
for _ in range(self.retry_times):
try:
response = dashscope.Generation.call(
self.model,
messages=messages,
seed=seed,
result_format='message', # set the result to be "message" format.
)
assert response.status_code == HTTPStatus.OK, response
expanded_prompt = response['output']['choices'][0]['message'][
'content']
return PromptOutput(
status=True,
prompt=expanded_prompt,
seed=seed,
system_prompt=system_prompt,
message=json.dumps(response, ensure_ascii=False))
except Exception as e:
exception = e
return PromptOutput(
status=False,
prompt=prompt,
seed=seed,
system_prompt=system_prompt,
message=str(exception))
def extend_with_img(self,
prompt,
system_prompt,
image: Union[Image.Image, str] = None,
seed=-1,
*args,
**kwargs):
if isinstance(image, str):
image = Image.open(image).convert('RGB')
w = image.width
h = image.height
area = min(w * h, self.max_image_size)
aspect_ratio = h / w
resized_h = round(math.sqrt(area * aspect_ratio))
resized_w = round(math.sqrt(area / aspect_ratio))
image = image.resize((resized_w, resized_h))
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as f:
image.save(f.name)
fname = f.name
image_path = f"file://{f.name}"
prompt = f"{prompt}"
messages = [
{
'role': 'system',
'content': [{
"text": system_prompt
}]
},
{
'role': 'user',
'content': [{
"text": prompt
}, {
"image": image_path
}]
},
]
response = None
result_prompt = prompt
exception = None
status = False
for _ in range(self.retry_times):
try:
response = dashscope.MultiModalConversation.call(
self.model,
messages=messages,
seed=seed,
result_format='message', # set the result to be "message" format.
)
assert response.status_code == HTTPStatus.OK, response
result_prompt = response['output']['choices'][0]['message'][
'content'][0]['text'].replace('\n', '\\n')
status = True
break
except Exception as e:
exception = e
result_prompt = result_prompt.replace('\n', '\\n')
os.remove(fname)
return PromptOutput(
status=status,
prompt=result_prompt,
seed=seed,
system_prompt=system_prompt,
message=str(exception) if not status else json.dumps(
response, ensure_ascii=False))
class QwenPromptExpander(PromptExpander):
model_dict = {
"QwenVL2.5_3B": "Qwen/Qwen2.5-VL-3B-Instruct",
"QwenVL2.5_7B": "Qwen/Qwen2.5-VL-7B-Instruct",
"Qwen2.5_3B": "Qwen/Qwen2.5-3B-Instruct",
"Qwen2.5_7B": "Qwen/Qwen2.5-7B-Instruct",
"Qwen2.5_14B": "Qwen/Qwen2.5-14B-Instruct",
}
def __init__(self,
model_name=None,
task=None,
device=0,
is_vl=False,
**kwargs):
'''
Args:
model_name: Use predefined model names such as 'QwenVL2.5_7B' and 'Qwen2.5_14B',
which are specific versions of the Qwen model. Alternatively, you can use the
local path to a downloaded model or the model name from Hugging Face."
Detailed Breakdown:
Predefined Model Names:
* 'QwenVL2.5_7B' and 'Qwen2.5_14B' are specific versions of the Qwen model.
Local Path:
* You can provide the path to a model that you have downloaded locally.
Hugging Face Model Name:
* You can also specify the model name from Hugging Face's model hub.
task: Task name. This is required to determine the default system prompt.
is_vl: A flag indicating whether the task involves visual-language processing.
**kwargs: Additional keyword arguments that can be passed to the function or method.
'''
if model_name is None:
model_name = 'Qwen2.5_14B' if not is_vl else 'QwenVL2.5_7B'
super().__init__(model_name, task, is_vl, device, **kwargs)
if (not os.path.exists(self.model_name)) and (self.model_name
in self.model_dict):
self.model_name = self.model_dict[self.model_name]
if self.is_vl:
# default: Load the model on the available device(s)
from transformers import (
AutoProcessor,
AutoTokenizer,
Qwen2_5_VLForConditionalGeneration,
)
try:
from .qwen_vl_utils import process_vision_info
except:
from qwen_vl_utils import process_vision_info
self.process_vision_info = process_vision_info
min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28
self.processor = AutoProcessor.from_pretrained(
self.model_name,
min_pixels=min_pixels,
max_pixels=max_pixels,
use_fast=True)
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
self.model_name,
torch_dtype=torch.bfloat16 if FLASH_VER == 2 else
torch.float16 if "AWQ" in self.model_name else "auto",
attn_implementation="flash_attention_2"
if FLASH_VER == 2 else None,
device_map="cpu")
else:
from transformers import AutoModelForCausalLM, AutoTokenizer
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=torch.float16
if "AWQ" in self.model_name else "auto",
attn_implementation="flash_attention_2"
if FLASH_VER == 2 else None,
device_map="cpu")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
def extend(self, prompt, system_prompt, seed=-1, *args, **kwargs):
self.model = self.model.to(self.device)
messages = [{
"role": "system",
"content": system_prompt
}, {
"role": "user",
"content": prompt
}]
text = self.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True)
model_inputs = self.tokenizer([text],
return_tensors="pt").to(self.model.device)
generated_ids = self.model.generate(**model_inputs, max_new_tokens=512)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(
model_inputs.input_ids, generated_ids)
]
expanded_prompt = self.tokenizer.batch_decode(
generated_ids, skip_special_tokens=True)[0]
self.model = self.model.to("cpu")
return PromptOutput(
status=True,
prompt=expanded_prompt,
seed=seed,
system_prompt=system_prompt,
message=json.dumps({"content": expanded_prompt},
ensure_ascii=False))
def extend_with_img(self,
prompt,
system_prompt,
image: Union[Image.Image, str] = None,
seed=-1,
*args,
**kwargs):
self.model = self.model.to(self.device)
messages = [{
'role': 'system',
'content': [{
"type": "text",
"text": system_prompt
}]
}, {
"role":
"user",
"content": [
{
"type": "image",
"image": image,
},
{
"type": "text",
"text": prompt
},
],
}]
# Preparation for inference
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = self.process_vision_info(messages)
inputs = self.processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(self.device)
# Inference: Generation of the output
generated_ids = self.model.generate(**inputs, max_new_tokens=512)
generated_ids_trimmed = [
out_ids[len(in_ids):]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
expanded_prompt = self.processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False)[0]
self.model = self.model.to("cpu")
return PromptOutput(
status=True,
prompt=expanded_prompt,
seed=seed,
system_prompt=system_prompt,
message=json.dumps({"content": expanded_prompt},
ensure_ascii=False))
if __name__ == "__main__":
logging.basicConfig(
level=logging.INFO,
format="[%(asctime)s] %(levelname)s: %(message)s",
handlers=[logging.StreamHandler(stream=sys.stdout)])
seed = 100
prompt = "夏日海滩度假风格,一只戴着墨镜的白色猫咪坐在冲浪板上。猫咪毛发蓬松,表情悠闲,直视镜头。背景是模糊的海滩景色,海水清澈,远处有绿色的山丘和蓝天白云。猫咪的姿态自然放松,仿佛在享受海风和阳光。近景特写,强调猫咪的细节和海滩的清新氛围。"
en_prompt = "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
image = "./examples/i2v_input.JPG"
def test(method,
prompt,
model_name,
task,
image=None,
en_prompt=None,
seed=None):
prompt_expander = method(
model_name=model_name, task=task, is_vl=image is not None)
result = prompt_expander(prompt, image=image, tar_lang="zh")
logging.info(f"zh prompt -> zh: {result.prompt}")
result = prompt_expander(prompt, image=image, tar_lang="en")
logging.info(f"zh prompt -> en: {result.prompt}")
if en_prompt is not None:
result = prompt_expander(en_prompt, image=image, tar_lang="zh")
logging.info(f"en prompt -> zh: {result.prompt}")
result = prompt_expander(en_prompt, image=image, tar_lang="en")
logging.info(f"en prompt -> en: {result.prompt}")
ds_model_name = None
ds_vl_model_name = None
qwen_model_name = None
qwen_vl_model_name = None
for task in ["t2v-A14B", "i2v-A14B", "ti2v-5B"]:
# test prompt extend
if "t2v" in task or "ti2v" in task:
# test dashscope api
logging.info(f"-" * 40)
logging.info(f"Testing {task} dashscope prompt extend")
test(
DashScopePromptExpander,
prompt,
ds_model_name,
task,
image=None,
en_prompt=en_prompt,
seed=seed)
# test qwen api
logging.info(f"-" * 40)
logging.info(f"Testing {task} qwen prompt extend")
test(
QwenPromptExpander,
prompt,
qwen_model_name,
task,
image=None,
en_prompt=en_prompt,
seed=seed)
# test prompt-image extend
if "i2v" in task:
# test dashscope api
logging.info(f"-" * 40)
logging.info(f"Testing {task} dashscope vl prompt extend")
test(
DashScopePromptExpander,
prompt,
ds_vl_model_name,
task,
image=image,
en_prompt=en_prompt,
seed=seed)
# test qwen api
logging.info(f"-" * 40)
logging.info(f"Testing {task} qwen vl prompt extend")
test(
QwenPromptExpander,
prompt,
qwen_vl_model_name,
task,
image=image,
en_prompt=en_prompt,
seed=seed)
# test empty prompt extend
if "i2v-A14B" in task:
# test dashscope api
logging.info(f"-" * 40)
logging.info(f"Testing {task} dashscope vl empty prompt extend")
test(
DashScopePromptExpander,
"",
ds_vl_model_name,
task,
image=image,
en_prompt=None,
seed=seed)
# test qwen api
logging.info(f"-" * 40)
logging.info(f"Testing {task} qwen vl empty prompt extend")
test(
QwenPromptExpander,
"",
qwen_vl_model_name,
task,
image=image,
en_prompt=None,
seed=seed)
|