Spaces:
Running
on
Zero
Running
on
Zero
# ===== CRITICAL: Import spaces FIRST before any CUDA operations ===== | |
try: | |
import spaces | |
HF_SPACES = True | |
except ImportError: | |
# If running locally, create a dummy decorator | |
def spaces_gpu_decorator(duration=60): | |
def decorator(func): | |
return func | |
return decorator | |
spaces = type('spaces', (), {'GPU': spaces_gpu_decorator})() | |
HF_SPACES = False | |
print("Warning: Running without Hugging Face Spaces GPU allocation") | |
# ===== Now import other libraries ===== | |
import random | |
import os | |
import uuid | |
import re | |
import time | |
from datetime import datetime | |
import gradio as gr | |
import numpy as np | |
import requests | |
import torch | |
from diffusers import DiffusionPipeline | |
from PIL import Image | |
# ===== OpenAI ์ค์ ===== | |
from openai import OpenAI | |
# Add error handling for API key | |
try: | |
client = OpenAI(api_key=os.getenv("LLM_API")) | |
except Exception as e: | |
print(f"Warning: OpenAI client initialization failed: {e}") | |
client = None | |
# ===== ํ๋กฌํํธ ์ฆ๊ฐ์ฉ ์คํ์ผ ํ๋ฆฌ์ ===== | |
STYLE_PRESETS = { | |
"None": "", | |
"Realistic Photo": "photorealistic, 8k, ultra-detailed, cinematic lighting, realistic skin texture", | |
"Oil Painting": "oil painting, rich brush strokes, canvas texture, baroque lighting", | |
"Comic Book": "comic book style, bold ink outlines, cel shading, vibrant colors", | |
"Watercolor": "watercolor illustration, soft gradients, splatter effect, pastel palette", | |
} | |
# ===== ์ ์ฅ ํด๋ ===== | |
SAVE_DIR = "saved_images" | |
if not os.path.exists(SAVE_DIR): | |
os.makedirs(SAVE_DIR, exist_ok=True) | |
# ===== ๋๋ฐ์ด์ค & ๋ชจ๋ธ ๋ก๋ ===== | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
repo_id = "black-forest-labs/FLUX.1-dev" | |
adapter_id = "seawolf2357/kim-korea" | |
# Add error handling for model loading | |
try: | |
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16) | |
pipeline.load_lora_weights(adapter_id) | |
pipeline = pipeline.to(device) | |
print("Model loaded successfully") | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
pipeline = None | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# ===== ํ๊ธ ์ฌ๋ถ ํ๋ณ ===== | |
HANGUL_RE = re.compile(r"[\u3131-\u318E\uAC00-\uD7A3]+") | |
def is_korean(text: str) -> bool: | |
return bool(HANGUL_RE.search(text)) | |
# ===== ๋ฒ์ญ & ์ฆ๊ฐ ํจ์ ===== | |
def openai_translate(text: str, retries: int = 3) -> str: | |
"""ํ๊ธ์ ์์ด๋ก ๋ฒ์ญ (OpenAI GPT-4o-mini ์ฌ์ฉ). ์์ด ์ ๋ ฅ์ด๋ฉด ๊ทธ๋๋ก ๋ฐํ.""" | |
if not is_korean(text): | |
return text | |
if client is None: | |
print("Warning: OpenAI client not available, returning original text") | |
return text | |
for attempt in range(retries): | |
try: | |
res = client.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[ | |
{ | |
"role": "system", | |
"content": "Translate the following Korean prompt into concise, descriptive English suitable for an image generation model. Keep the meaning, do not add new concepts." | |
}, | |
{"role": "user", "content": text} | |
], | |
temperature=0.3, | |
max_tokens=256, | |
) | |
return res.choices[0].message.content.strip() | |
except Exception as e: | |
print(f"[translate] attempt {attempt + 1} failed: {e}") | |
time.sleep(2) | |
return text # ๋ฒ์ญ ์คํจ ์ ์๋ฌธ ๊ทธ๋๋ก | |
def enhance_prompt(text: str, retries: int = 3) -> str: | |
"""OpenAI๋ฅผ ํตํด ํ๋กฌํํธ๋ฅผ ์ฆ๊ฐํ์ฌ ๊ณ ํ์ง ์ด๋ฏธ์ง ์์ฑ์ ์ํ ์์ธํ ์ค๋ช ์ผ๋ก ๋ณํ.""" | |
if client is None: | |
print("Warning: OpenAI client not available, returning original text") | |
return text | |
for attempt in range(retries): | |
try: | |
res = client.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[ | |
{ | |
"role": "system", | |
"content": """You are an expert prompt engineer for image generation models. Enhance the given prompt to create high-quality, detailed images. | |
Guidelines: | |
- Add specific visual details (lighting, composition, colors, textures) | |
- Include technical photography terms (depth of field, focal length, etc.) | |
- Add atmosphere and mood descriptors | |
- Specify image quality terms (4K, ultra-detailed, professional, etc.) | |
- Keep the core subject and meaning intact | |
- Make it comprehensive but not overly long | |
- Focus on visual elements that will improve image generation quality | |
Example: | |
Input: "A man giving a speech" | |
Output: "A professional man giving an inspiring speech at a podium, dramatic lighting with warm spotlights, confident posture and gestures, high-resolution 4K photography, sharp focus, cinematic composition, bokeh background with audience silhouettes, professional event setting, detailed facial expressions, realistic skin texture" | |
""" | |
}, | |
{"role": "user", "content": f"Enhance this prompt for high-quality image generation: {text}"} | |
], | |
temperature=0.7, | |
max_tokens=512, | |
) | |
return res.choices[0].message.content.strip() | |
except Exception as e: | |
print(f"[enhance] attempt {attempt + 1} failed: {e}") | |
time.sleep(2) | |
return text # ์ฆ๊ฐ ์คํจ ์ ์๋ฌธ ๊ทธ๋๋ก | |
def prepare_prompt(user_prompt: str, style_key: str, enhance_prompt_enabled: bool = False) -> str: | |
"""ํ๊ธ์ด๋ฉด ๋ฒ์ญํ๊ณ , ํ๋กฌํํธ ์ฆ๊ฐ ์ต์ ์ด ํ์ฑํ๋๋ฉด ์ฆ๊ฐํ๊ณ , ์ ํํ ์คํ์ผ ํ๋ฆฌ์ ์ ๋ถ์ฌ์ ์ต์ข ํ๋กฌํํธ๋ฅผ ๋ง๋ ๋ค.""" | |
# 1. ๋ฒ์ญ (ํ๊ธ์ธ ๊ฒฝ์ฐ) | |
prompt_en = openai_translate(user_prompt) | |
# 2. ํ๋กฌํํธ ์ฆ๊ฐ (ํ์ฑํ๋ ๊ฒฝ์ฐ) | |
if enhance_prompt_enabled: | |
prompt_en = enhance_prompt(prompt_en) | |
print(f"Enhanced prompt: {prompt_en}") | |
# 3. ์คํ์ผ ํ๋ฆฌ์ ์ ์ฉ | |
style_suffix = STYLE_PRESETS.get(style_key, "") | |
if style_suffix: | |
final_prompt = f"{prompt_en}, {style_suffix}" | |
else: | |
final_prompt = prompt_en | |
return final_prompt | |
# ===== ์ด๋ฏธ์ง ์ ์ฅ ===== | |
def save_generated_image(image: Image.Image, prompt: str) -> str: | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
unique_id = str(uuid.uuid4())[:8] | |
filename = f"{timestamp}_{unique_id}.png" | |
filepath = os.path.join(SAVE_DIR, filename) | |
image.save(filepath) | |
# ๋ฉํ๋ฐ์ดํฐ ์ ์ฅ | |
metadata_file = os.path.join(SAVE_DIR, "metadata.txt") | |
with open(metadata_file, "a", encoding="utf-8") as f: | |
f.write(f"{filename}|{prompt}|{timestamp}\n") | |
return filepath | |
# ===== Diffusion ํธ์ถ ===== | |
def run_pipeline(prompt: str, seed: int, width: int, height: int, guidance_scale: float, num_steps: int, lora_scale: float): | |
if pipeline is None: | |
raise ValueError("Model pipeline not loaded") | |
generator = torch.Generator(device=device).manual_seed(int(seed)) | |
result = pipeline( | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs={"scale": lora_scale}, | |
).images[0] | |
return result | |
# ===== Gradio inference ๋ํผ ===== | |
def generate_image( | |
user_prompt: str, | |
style_key: str, | |
enhance_prompt_enabled: bool = False, | |
seed: int = 42, | |
randomize_seed: bool = True, | |
width: int = 1024, | |
height: int = 768, | |
guidance_scale: float = 3.5, | |
num_inference_steps: int = 30, | |
lora_scale: float = 1.0, | |
progress=None, | |
): | |
try: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# 1) ๋ฒ์ญ + ์ฆ๊ฐ | |
final_prompt = prepare_prompt(user_prompt, style_key, enhance_prompt_enabled) | |
print(f"Final prompt: {final_prompt}") | |
# 2) ํ์ดํ๋ผ์ธ ํธ์ถ | |
image = run_pipeline(final_prompt, seed, width, height, guidance_scale, num_inference_steps, lora_scale) | |
# 3) ์ ์ฅ | |
save_generated_image(image, final_prompt) | |
return image, seed | |
except Exception as e: | |
print(f"Error generating image: {e}") | |
# Return a placeholder or error message | |
error_image = Image.new('RGB', (width, height), color='red') | |
return error_image, seed | |
# ===== ์์ ํ๋กฌํํธ (ํ๊ตญ์ด/์์ด ํผ์ฉ ํ์ฉ) ===== | |
examples = [ | |
"Mr. KIM์ด ๋ ์์ผ๋ก 'Fighting!' ํ์๋ง์ ๋ค๊ณ ์๋ ๋ชจ์ต, ์ ๊ตญ์ฌ๊ณผ ๊ตญ๊ฐ ๋ฐ์ ์ ๋ํ ์์ง๋ฅผ ๋ณด์ฌ์ฃผ๊ณ ์๋ค.", | |
"Mr. KIM์ด ์ํ์ ๋ค์ด ์ฌ๋ฆฌ๋ฉฐ ์น๋ฆฌ์ ํ์ ์ผ๋ก ํํธํ๋ ๋ชจ์ต, ์น๋ฆฌ์ ๋ฏธ๋์ ๋ํ ํฌ๋ง์ ๋ณด์ฌ์ฃผ๊ณ ์๋ค.", | |
"Mr. KIM์ด ์ด๋๋ณต์ ์ ๊ณ ๊ณต์์์ ์กฐ๊น ํ๋ ๋ชจ์ต, ๊ฑด๊ฐํ ์ํ์ต๊ด๊ณผ ํ๊ธฐ์ฐฌ ๋ฆฌ๋์ญ์ ๋ณด์ฌ์ฃผ๊ณ ์๋ค.", | |
"Mr. KIM์ด ๋ถ๋น๋ ๊ฑฐ๋ฆฌ์์ ์ฌ์ฑ ์๋ฏผ๋ค๊ณผ ๋ฐ๋ปํ๊ฒ ์ ์ํ๋ ๋ชจ์ต, ์ฌ์ฑ ์ ๊ถ์๋ค์ ๋ํ ์ง์ ํ ๊ด์ฌ๊ณผ ์ํต์ ๋ณด์ฌ์ฃผ๊ณ ์๋ค.", | |
"Mr. KIM์ด ์ ๊ฑฐ ์ ์ธ์ฅ์์ ์งํ์ ์ ํฅํด ์๊ฐ๋ฝ์ผ๋ก ๊ฐ๋ฆฌํค๋ฉฐ ์๊ฐ์ ์ฃผ๋ ์ ์ค์ฒ๋ฅผ ์ทจํ๊ณ ์๊ณ , ์ฌ์ฑ๋ค๊ณผ ์์ด๋ค์ด ๋ฐ์๋ฅผ ์น๊ณ ์๋ค.", | |
"Mr. KIM์ด ์ง์ญ ํ์ฌ์ ์ฐธ์ฌํ์ฌ ์ด์ ์ ์ผ๋ก ์์ํ๋ ์ฌ์ฑ ์ง์ง์๋ค์๊ฒ ๋๋ฌ์ธ์ฌ ์๋ ๋ชจ์ต.", | |
"Mr. KIM visiting a local market, engaging in friendly conversation with female vendors and shopkeepers.", | |
"Mr. KIM walking through a university campus, discussing education policies with female students and professors.", | |
"Mr. KIM delivering a powerful speech in front of a large crowd with confident gestures and determined expression.", | |
"Mr. KIM in a dynamic interview setting, passionately outlining his visions for the future.", | |
"Mr. KIM preparing for an important debate, surrounded by paperwork, looking focused and resolute.", | |
] | |
# ===== ์ปค์คํ CSS (๋ถ์ ํค ์ ์ง) ===== | |
custom_css = """ | |
:root { | |
--color-primary: #8F1A3A; | |
--color-secondary: #FF4B4B; | |
--background-fill-primary: linear-gradient(to right, #FFF5F5, #FED7D7, #FEB2B2); | |
} | |
footer {visibility: hidden;} | |
.gradio-container {background: var(--background-fill-primary);} | |
.title {color: var(--color-primary)!important; font-size:3rem!important; font-weight:700!important; text-align:center; margin:1rem 0; font-family:'Playfair Display',serif;} | |
.subtitle {color:#4A5568!important; font-size:1.2rem!important; text-align:center; margin-bottom:1.5rem; font-style:italic;} | |
.collection-link {text-align:center; margin-bottom:2rem; font-size:1.1rem;} | |
.collection-link a {color:var(--color-primary); text-decoration:underline; transition:color .3s ease;} | |
.collection-link a:hover {color:var(--color-secondary);} | |
.model-description{background:rgba(255,255,255,.8); border-radius:12px; padding:24px; margin:20px 0; box-shadow:0 4px 12px rgba(0,0,0,.05); border-left:5px solid var(--color-primary);} | |
button.primary{background:var(--color-primary)!important; color:#fff!important; transition:all .3s ease;} | |
button:hover{transform:translateY(-2px); box-shadow:0 5px 15px rgba(0,0,0,.1);} | |
.input-container{border-radius:10px; box-shadow:0 2px 8px rgba(0,0,0,.05); background:rgba(255,255,255,.6); padding:20px; margin-bottom:1rem;} | |
.advanced-settings{margin-top:1rem; padding:1rem; border-radius:10px; background:rgba(255,255,255,.6);} | |
.example-region{background:rgba(255,255,255,.5); border-radius:10px; padding:1rem; margin-top:1rem;} | |
/* ํ๋กฌํํธ ์ ๋ ฅ์นธ ํฌ๊ธฐ 2๋ฐฐ ์ฆ๊ฐ */ | |
.large-prompt textarea { | |
min-height: 120px !important; | |
font-size: 16px !important; | |
line-height: 1.5 !important; | |
} | |
/* ์์ฑ ๋ฒํผ ์๊ฒ ๋ง๋ค๊ธฐ */ | |
.small-generate-btn { | |
max-width: 120px !important; | |
height: 40px !important; | |
font-size: 14px !important; | |
padding: 8px 16px !important; | |
} | |
/* ํ๋กฌํํธ ์ฆ๊ฐ ์น์ ์คํ์ผ */ | |
.prompt-enhance-section { | |
background: rgba(255,255,255,.7); | |
border-radius: 8px; | |
padding: 15px; | |
margin-top: 10px; | |
border-left: 3px solid var(--color-primary); | |
} | |
/* ์คํ์ผ ํ๋ฆฌ์ ์น์ */ | |
.style-preset-section { | |
background: rgba(255,255,255,.6); | |
border-radius: 8px; | |
padding: 15px; | |
margin-top: 10px; | |
} | |
""" | |
# ===== Gradio UI ===== | |
def create_interface(): | |
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo: | |
gr.HTML('<div class="title">Mr. KIM in KOREA</div>') | |
gr.HTML('<div class="collection-link"><a href="https://huggingface.co/collections/openfree/painting-art-ai-681453484ec15ef5978bbeb1" target="_blank">Visit the LoRA Model Collection</a></div>') | |
with gr.Group(elem_classes="model-description"): | |
gr.HTML(""" | |
<p> | |
๋ณธ ๋ชจ๋ธ์ ์ฐ๊ตฌ ๋ชฉ์ ์ผ๋ก ํน์ ์ธ์ ์ผ๊ตด๊ณผ ์ธ๋ชจ๋ฅผ ํ์ตํ LoRA ๋ชจ๋ธ์ ๋๋ค.<br> | |
๋ชฉ์ ์ธ์ ์ฉ๋๋ก ๋ฌด๋จ ์ฌ์ฉ ์๋๋ก ์ ์ํด ์ฃผ์ธ์.<br> | |
(์์ prompt ์ฌ์ฉ ์ ๋ฐ๋์ 'kim'์ ํฌํจํ์ฌ์ผ ์ต์ ์ ๊ฒฐ๊ณผ๋ฅผ ์ป์ ์ ์์ต๋๋ค.) | |
</p> | |
""") | |
# ===== ๋ฉ์ธ ์ ๋ ฅ ===== | |
with gr.Column(): | |
with gr.Row(elem_classes="input-container"): | |
with gr.Column(scale=4): | |
user_prompt = gr.Text( | |
label="Prompt", | |
max_lines=5, | |
value=examples[0], | |
elem_classes="large-prompt" | |
) | |
with gr.Column(scale=1): | |
run_button = gr.Button( | |
"์์ฑ", | |
variant="primary", | |
elem_classes="small-generate-btn" | |
) | |
# ํ๋กฌํํธ ์ฆ๊ฐ ์ต์ (์์ฑ ๋ฒํผ ์๋) | |
with gr.Group(elem_classes="prompt-enhance-section"): | |
enhance_prompt_checkbox = gr.Checkbox( | |
label="๐ ํ๋กฌํํธ ์ฆ๊ฐ (AI๋ก ํ๋กฌํํธ๋ฅผ ์๋์ผ๋ก ๊ฐ์ ํ์ฌ ๊ณ ํ์ง ์ด๋ฏธ์ง ์์ฑ)", | |
value=False, | |
info="OpenAI API๋ฅผ ์ฌ์ฉํ์ฌ ์ ๋ ฅํ ํ๋กฌํํธ๋ฅผ ๋์ฑ ์์ธํ๊ณ ๊ณ ํ์ง์ ์ด๋ฏธ์ง๋ฅผ ์์ฑํ ์ ์๋๋ก ์๋์ผ๋ก ์ฆ๊ฐํฉ๋๋ค." | |
) | |
# ์คํ์ผ ํ๋ฆฌ์ ์น์ | |
with gr.Group(elem_classes="style-preset-section"): | |
style_select = gr.Radio( | |
label="๐จ Style Preset", | |
choices=list(STYLE_PRESETS.keys()), | |
value="None", | |
interactive=True | |
) | |
result_image = gr.Image(label="Generated Image") | |
seed_output = gr.Number(label="Seed") | |
# ===== ๊ณ ๊ธ ์ค์ ===== | |
with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"): | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768) | |
with gr.Row(): | |
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=3.5) | |
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=30) | |
lora_scale = gr.Slider(label="LoRA scale", minimum=0.0, maximum=1.0, step=0.1, value=1.0) | |
# ===== ์์ ์์ญ ===== | |
with gr.Group(elem_classes="example-region"): | |
gr.Markdown("### Examples") | |
gr.Examples(examples=examples, inputs=user_prompt, cache_examples=False) | |
# ===== ์ด๋ฒคํธ ===== | |
run_button.click( | |
fn=generate_image, | |
inputs=[ | |
user_prompt, | |
style_select, | |
enhance_prompt_checkbox, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
lora_scale, | |
], | |
outputs=[result_image, seed_output], | |
) | |
return demo | |
# ===== ์ ํ๋ฆฌ์ผ์ด์ ์คํ ===== | |
if __name__ == "__main__": | |
demo = create_interface() | |
demo.queue() | |
demo.launch() |