|
|
|
|
|
import os |
|
import re |
|
import tempfile |
|
import gc |
|
from collections.abc import Iterator |
|
from threading import Thread |
|
import json |
|
import requests |
|
import cv2 |
|
import base64 |
|
import logging |
|
import time |
|
from urllib.parse import quote |
|
|
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from loguru import logger |
|
from PIL import Image |
|
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer |
|
|
|
|
|
import pandas as pd |
|
import PyPDF2 |
|
|
|
|
|
|
|
|
|
from gradio_client import Client |
|
|
|
API_URL = "http://211.233.58.201:7896" |
|
|
|
logging.basicConfig( |
|
level=logging.DEBUG, |
|
format='%(asctime)s - %(levelname)s - %(message)s' |
|
) |
|
|
|
|
|
|
|
|
|
try: |
|
with open("mbti.json", "r", encoding="utf-8") as f: |
|
|
|
mbti_key = json.load(f) |
|
mbti_key = mbti_key.strip().lower() if isinstance(mbti_key, str) else "intp" |
|
except Exception as e: |
|
logging.error(f"Error reading mbti.json: {e}") |
|
mbti_key = "intp" |
|
|
|
mbti_mapping = { |
|
"intj": "INTJ (The Architect) - Future-oriented with innovative strategies and thorough analysis. Example: [Dana Scully](https://en.wikipedia.org/wiki/Dana_Scully)", |
|
"intp": "INTP (The Thinker) - Excels at theoretical analysis and creative problem solving. Example: [Velma Dinkley](https://en.wikipedia.org/wiki/Velma_Dinkley)", |
|
"entj": "ENTJ (The Commander) - Strong leadership and clear goals with efficient strategic planning. Example: [Miranda Priestly](https://en.wikipedia.org/wiki/Miranda_Priestly)", |
|
"entp": "ENTP (The Debater) - Innovative, challenge-seeking, and enjoys exploring new possibilities. Example: [Harley Quinn](https://en.wikipedia.org/wiki/Harley_Quinn)", |
|
"infj": "INFJ (The Advocate) - Insightful, idealistic and morally driven. Example: [Wonder Woman](https://en.wikipedia.org/wiki/Wonder_Woman)", |
|
"infp": "INFP (The Mediator) - Passionate and idealistic, pursuing core values with creativity. Example: [Amélie Poulain](https://en.wikipedia.org/wiki/Am%C3%A9lie)", |
|
"enfj": "ENFJ (The Protagonist) - Empathetic and dedicated to social harmony. Example: [Mulan](https://en.wikipedia.org/wiki/Mulan_(Disney))", |
|
"enfp": "ENFP (The Campaigner) - Inspiring and constantly sharing creative ideas. Example: [Elle Woods](https://en.wikipedia.org/wiki/Legally_Blonde)", |
|
"istj": "ISTJ (The Logistician) - Systematic, dependable, and values tradition and rules. Example: [Clarice Starling](https://en.wikipedia.org/wiki/Clarice_Starling)", |
|
"isfj": "ISFJ (The Defender) - Compassionate and attentive to others’ needs. Example: [Molly Weasley](https://en.wikipedia.org/wiki/Molly_Weasley)", |
|
"estj": "ESTJ (The Executive) - Organized, practical, and demonstrates clear execution skills. Example: [Monica Geller](https://en.wikipedia.org/wiki/Monica_Geller)", |
|
"esfj": "ESFJ (The Consul) - Outgoing, cooperative, and an effective communicator. Example: [Rachel Green](https://en.wikipedia.org/wiki/Rachel_Green)", |
|
"istp": "ISTP (The Virtuoso) - Analytical and resourceful, solving problems with quick thinking. Example: [Black Widow (Natasha Romanoff)](https://en.wikipedia.org/wiki/Black_Widow_(Marvel_Comics))", |
|
"isfp": "ISFP (The Adventurer) - Creative, sensitive, and appreciates artistic expression. Example: [Arwen](https://en.wikipedia.org/wiki/Arwen)", |
|
"estp": "ESTP (The Entrepreneur) - Bold and action-oriented, thriving on challenges. Example: [Lara Croft](https://en.wikipedia.org/wiki/Lara_Croft)", |
|
"esfp": "ESFP (The Entertainer) - Energetic, spontaneous, and radiates positive energy. Example: [Phoebe Buffay](https://en.wikipedia.org/wiki/Phoebe_Buffay)" |
|
} |
|
|
|
|
|
fixed_mbti = mbti_mapping.get(mbti_key, mbti_mapping["intp"]) |
|
|
|
|
|
|
|
|
|
def test_api_connection() -> str: |
|
"""Test API server connection.""" |
|
try: |
|
client = Client(API_URL) |
|
return "API connection successful: Operating normally" |
|
except Exception as e: |
|
logging.error(f"API connection test failed: {e}") |
|
return f"API connection failed: {e}" |
|
|
|
|
|
|
|
|
|
def generate_image(prompt: str, width: float, height: float, guidance: float, inference_steps: float, seed: float): |
|
"""Image generation function (flexible return type).""" |
|
if not prompt: |
|
return None, "Error: A prompt is required." |
|
try: |
|
logging.info(f"Calling image generation API with prompt: {prompt}") |
|
client = Client(API_URL) |
|
result = client.predict( |
|
prompt=prompt, |
|
width=int(width), |
|
height=int(height), |
|
guidance=float(guidance), |
|
inference_steps=int(inference_steps), |
|
seed=int(seed), |
|
do_img2img=False, |
|
init_image=None, |
|
image2image_strength=0.8, |
|
resize_img=True, |
|
api_name="/generate_image" |
|
) |
|
logging.info(f"Image generation result: {type(result)}, length: {len(result) if isinstance(result, (list, tuple)) else 'unknown'}") |
|
if isinstance(result, (list, tuple)) and len(result) > 0: |
|
image_data = result[0] |
|
seed_info = result[1] if len(result) > 1 else "Unknown seed" |
|
return image_data, seed_info |
|
else: |
|
return result, "Unknown seed" |
|
except Exception as e: |
|
logging.error(f"Image generation failed: {str(e)}") |
|
return None, f"Error: {str(e)}" |
|
|
|
|
|
def fix_base64_padding(data): |
|
"""Fix the padding of a Base64 string.""" |
|
if isinstance(data, bytes): |
|
data = data.decode('utf-8') |
|
if "base64," in data: |
|
data = data.split("base64,", 1)[1] |
|
missing_padding = len(data) % 4 |
|
if missing_padding: |
|
data += '=' * (4 - missing_padding) |
|
return data |
|
|
|
|
|
|
|
|
|
def clear_cuda_cache(): |
|
"""Explicitly clear the CUDA cache.""" |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
|
|
|
|
|
|
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "") |
|
|
|
def extract_keywords(text: str, top_k: int = 5) -> str: |
|
"""Extract simple keywords: only retain English, Korean, numbers, and spaces.""" |
|
text = re.sub(r"[^a-zA-Z0-9가-힣\s]", "", text) |
|
tokens = text.split() |
|
return " ".join(tokens[:top_k]) |
|
|
|
def do_web_search(query: str) -> str: |
|
"""Call the SerpHouse LIVE API to return Markdown-formatted search results.""" |
|
try: |
|
url = "https://api.serphouse.com/serp/live" |
|
params = { |
|
"q": query, |
|
"domain": "google.com", |
|
"serp_type": "web", |
|
"device": "desktop", |
|
"lang": "en", |
|
"num": "20" |
|
} |
|
headers = {"Authorization": f"Bearer {SERPHOUSE_API_KEY}"} |
|
logger.info(f"Calling SerpHouse API with query: {query}") |
|
response = requests.get(url, headers=headers, params=params, timeout=60) |
|
response.raise_for_status() |
|
data = response.json() |
|
results = data.get("results", {}) |
|
organic = None |
|
if isinstance(results, dict) and "organic" in results: |
|
organic = results["organic"] |
|
elif isinstance(results, dict) and "results" in results: |
|
if isinstance(results["results"], dict) and "organic" in results["results"]: |
|
organic = results["results"]["organic"] |
|
elif "organic" in data: |
|
organic = data["organic"] |
|
if not organic: |
|
logger.warning("Organic results not found in response.") |
|
return "No web search results available or the API response structure is unexpected." |
|
max_results = min(20, len(organic)) |
|
limited_organic = organic[:max_results] |
|
summary_lines = [] |
|
for idx, item in enumerate(limited_organic, start=1): |
|
title = item.get("title", "No Title") |
|
link = item.get("link", "#") |
|
snippet = item.get("snippet", "No Description") |
|
displayed_link = item.get("displayed_link", link) |
|
summary_lines.append( |
|
f"### Result {idx}: {title}\n\n" |
|
f"{snippet}\n\n" |
|
f"**Source**: [{displayed_link}]({link})\n\n" |
|
f"---\n" |
|
) |
|
instructions = """ |
|
# Web Search Results |
|
Below are the search results. Use this information to answer the query: |
|
1. Refer to each result's title, description, and source link. |
|
2. In your answer, explicitly cite the source of any used information (e.g., "[Source Title](link)"). |
|
3. Include the actual source links in your response. |
|
4. Synthesize information from multiple sources. |
|
5. At the end, add a "References:" section listing the main source links. |
|
""" |
|
return instructions + "\n".join(summary_lines) |
|
except Exception as e: |
|
logger.error(f"Web search failed: {e}") |
|
return f"Web search failed: {str(e)}" |
|
|
|
|
|
|
|
|
|
MAX_CONTENT_CHARS = 2000 |
|
MAX_INPUT_LENGTH = 2096 |
|
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B") |
|
processor = AutoProcessor.from_pretrained(model_id, padding_side="left") |
|
model = Gemma3ForConditionalGeneration.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="eager" |
|
) |
|
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5")) |
|
|
|
|
|
|
|
|
|
def analyze_csv_file(path: str) -> str: |
|
try: |
|
df = pd.read_csv(path) |
|
if df.shape[0] > 50 or df.shape[1] > 10: |
|
df = df.iloc[:50, :10] |
|
df_str = df.to_string() |
|
if len(df_str) > MAX_CONTENT_CHARS: |
|
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..." |
|
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}" |
|
except Exception as e: |
|
return f"CSV file read failed ({os.path.basename(path)}): {str(e)}" |
|
|
|
def analyze_txt_file(path: str) -> str: |
|
try: |
|
with open(path, "r", encoding="utf-8") as f: |
|
text = f.read() |
|
if len(text) > MAX_CONTENT_CHARS: |
|
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." |
|
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}" |
|
except Exception as e: |
|
return f"TXT file read failed ({os.path.basename(path)}): {str(e)}" |
|
|
|
def pdf_to_markdown(pdf_path: str) -> str: |
|
text_chunks = [] |
|
try: |
|
with open(pdf_path, "rb") as f: |
|
reader = PyPDF2.PdfReader(f) |
|
max_pages = min(5, len(reader.pages)) |
|
for page_num in range(max_pages): |
|
page_text = reader.pages[page_num].extract_text() or "" |
|
page_text = page_text.strip() |
|
if page_text: |
|
if len(page_text) > MAX_CONTENT_CHARS // max_pages: |
|
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)" |
|
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n") |
|
if len(reader.pages) > max_pages: |
|
text_chunks.append(f"\n...(Displaying only {max_pages} out of {len(reader.pages)} pages)...") |
|
except Exception as e: |
|
return f"PDF file read failed ({os.path.basename(pdf_path)}): {str(e)}" |
|
full_text = "\n".join(text_chunks) |
|
if len(full_text) > MAX_CONTENT_CHARS: |
|
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." |
|
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}" |
|
|
|
|
|
|
|
|
|
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: |
|
image_count = 0 |
|
video_count = 0 |
|
for path in paths: |
|
if path.endswith(".mp4"): |
|
video_count += 1 |
|
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE): |
|
image_count += 1 |
|
return image_count, video_count |
|
|
|
def count_files_in_history(history: list[dict]) -> tuple[int, int]: |
|
image_count = 0 |
|
video_count = 0 |
|
for item in history: |
|
if item["role"] != "user" or isinstance(item["content"], str): |
|
continue |
|
if isinstance(item["content"], list) and len(item["content"]) > 0: |
|
file_path = item["content"][0] |
|
if isinstance(file_path, str): |
|
if file_path.endswith(".mp4"): |
|
video_count += 1 |
|
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE): |
|
image_count += 1 |
|
return image_count, video_count |
|
|
|
def validate_media_constraints(message: dict, history: list[dict]) -> bool: |
|
media_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4")] |
|
new_image_count, new_video_count = count_files_in_new_message(media_files) |
|
history_image_count, history_video_count = count_files_in_history(history) |
|
image_count = history_image_count + new_image_count |
|
video_count = history_video_count + new_video_count |
|
if video_count > 1: |
|
gr.Warning("Only one video file is supported.") |
|
return False |
|
if video_count == 1: |
|
if image_count > 0: |
|
gr.Warning("Mixing images and a video is not allowed.") |
|
return False |
|
if "<image>" in message["text"]: |
|
gr.Warning("The <image> tag cannot be used together with a video file.") |
|
return False |
|
if video_count == 0 and image_count > MAX_NUM_IMAGES: |
|
gr.Warning(f"You can upload a maximum of {MAX_NUM_IMAGES} images.") |
|
return False |
|
if "<image>" in message["text"]: |
|
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] |
|
image_tag_count = message["text"].count("<image>") |
|
if image_tag_count != len(image_files): |
|
gr.Warning("The number of <image> tags does not match the number of image files provided.") |
|
return False |
|
return True |
|
|
|
|
|
|
|
|
|
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: |
|
vidcap = cv2.VideoCapture(video_path) |
|
fps = vidcap.get(cv2.CAP_PROP_FPS) |
|
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
frame_interval = max(int(fps), int(total_frames / 10)) |
|
frames = [] |
|
for i in range(0, total_frames, frame_interval): |
|
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) |
|
success, image = vidcap.read() |
|
if success: |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5) |
|
pil_image = Image.fromarray(image) |
|
timestamp = round(i / fps, 2) |
|
frames.append((pil_image, timestamp)) |
|
if len(frames) >= 5: |
|
break |
|
vidcap.release() |
|
return frames |
|
|
|
def process_video(video_path: str) -> tuple[list[dict], list[str]]: |
|
content = [] |
|
temp_files = [] |
|
frames = downsample_video(video_path) |
|
for pil_image, timestamp in frames: |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: |
|
pil_image.save(temp_file.name) |
|
temp_files.append(temp_file.name) |
|
content.append({"type": "text", "text": f"Frame {timestamp}:"}) |
|
content.append({"type": "image", "url": temp_file.name}) |
|
return content, temp_files |
|
|
|
|
|
|
|
|
|
def process_interleaved_images(message: dict) -> list[dict]: |
|
parts = re.split(r"(<image>)", message["text"]) |
|
content = [] |
|
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] |
|
image_index = 0 |
|
for part in parts: |
|
if part == "<image>" and image_index < len(image_files): |
|
content.append({"type": "image", "url": image_files[image_index]}) |
|
image_index += 1 |
|
elif part.strip(): |
|
content.append({"type": "text", "text": part.strip()}) |
|
else: |
|
if isinstance(part, str) and part != "<image>": |
|
content.append({"type": "text", "text": part}) |
|
return content |
|
|
|
|
|
|
|
|
|
def is_image_file(file_path: str) -> bool: |
|
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE)) |
|
|
|
def is_video_file(file_path: str) -> bool: |
|
return file_path.endswith(".mp4") |
|
|
|
def is_document_file(file_path: str) -> bool: |
|
return file_path.lower().endswith(".pdf") or file_path.lower().endswith(".csv") or file_path.lower().endswith(".txt") |
|
|
|
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]: |
|
temp_files = [] |
|
if not message["files"]: |
|
return [{"type": "text", "text": message["text"]}], temp_files |
|
video_files = [f for f in message["files"] if is_video_file(f)] |
|
image_files = [f for f in message["files"] if is_image_file(f)] |
|
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")] |
|
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")] |
|
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")] |
|
content_list = [{"type": "text", "text": message["text"]}] |
|
for csv_path in csv_files: |
|
content_list.append({"type": "text", "text": analyze_csv_file(csv_path)}) |
|
for txt_path in txt_files: |
|
content_list.append({"type": "text", "text": analyze_txt_file(txt_path)}) |
|
for pdf_path in pdf_files: |
|
content_list.append({"type": "text", "text": pdf_to_markdown(pdf_path)}) |
|
if video_files: |
|
video_content, video_temp_files = process_video(video_files[0]) |
|
content_list += video_content |
|
temp_files.extend(video_temp_files) |
|
return content_list, temp_files |
|
if "<image>" in message["text"] and image_files: |
|
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files}) |
|
if content_list and content_list[0]["type"] == "text": |
|
content_list = content_list[1:] |
|
return interleaved_content + content_list, temp_files |
|
else: |
|
for img_path in image_files: |
|
content_list.append({"type": "image", "url": img_path}) |
|
return content_list, temp_files |
|
|
|
|
|
|
|
|
|
def process_history(history: list[dict]) -> list[dict]: |
|
messages = [] |
|
current_user_content = [] |
|
for item in history: |
|
if item["role"] == "assistant": |
|
if current_user_content: |
|
messages.append({"role": "user", "content": current_user_content}) |
|
current_user_content = [] |
|
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) |
|
else: |
|
content = item["content"] |
|
if isinstance(content, str): |
|
current_user_content.append({"type": "text", "text": content}) |
|
elif isinstance(content, list) and len(content) > 0: |
|
file_path = content[0] |
|
if is_image_file(file_path): |
|
current_user_content.append({"type": "image", "url": file_path}) |
|
else: |
|
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"}) |
|
if current_user_content: |
|
messages.append({"role": "user", "content": current_user_content}) |
|
return messages |
|
|
|
|
|
|
|
|
|
def _model_gen_with_oom_catch(**kwargs): |
|
try: |
|
model.generate(**kwargs) |
|
except torch.cuda.OutOfMemoryError: |
|
raise RuntimeError("[OutOfMemoryError] Insufficient GPU memory.") |
|
finally: |
|
clear_cuda_cache() |
|
|
|
|
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def run( |
|
message: dict, |
|
history: list[dict], |
|
system_prompt: str = "", |
|
max_new_tokens: int = 512, |
|
use_web_search: bool = False, |
|
web_search_query: str = "", |
|
age_group: str = "20s", |
|
mbti_personality: str = "", |
|
sexual_openness: int = 2, |
|
image_gen: bool = False |
|
) -> Iterator[str]: |
|
if not validate_media_constraints(message, history): |
|
yield "" |
|
return |
|
temp_files = [] |
|
try: |
|
|
|
persona = ( |
|
f"{system_prompt.strip()}\n\n" |
|
f"Gender: Female\n" |
|
f"Age Group: {age_group}\n" |
|
f"MBTI Persona: {mbti_personality}\n" |
|
f"Sexual Openness (1-5): {sexual_openness}\n" |
|
) |
|
combined_system_msg = f"[System Prompt]\n{persona.strip()}\n\n" |
|
|
|
if use_web_search: |
|
user_text = message["text"] |
|
ws_query = extract_keywords(user_text) |
|
if ws_query.strip(): |
|
logger.info(f"[Auto web search keywords] {ws_query!r}") |
|
ws_result = do_web_search(ws_query) |
|
combined_system_msg += f"[Search Results (Top 20 Items)]\n{ws_result}\n\n" |
|
combined_system_msg += ( |
|
"[Note: In your answer, cite the above search result links as sources]\n" |
|
"[Important Instructions]\n" |
|
"1. Include a citation in the format \"[Source Title](link)\" for any information from the search results.\n" |
|
"2. Synthesize information from multiple sources when answering.\n" |
|
"3. At the end, add a \"References:\" section listing the main source links.\n" |
|
) |
|
else: |
|
combined_system_msg += "[No valid keywords found; skipping web search]\n\n" |
|
messages = [] |
|
if combined_system_msg.strip(): |
|
messages.append({"role": "system", "content": [{"type": "text", "text": combined_system_msg.strip()}]}) |
|
messages.extend(process_history(history)) |
|
user_content, user_temp_files = process_new_user_message(message) |
|
temp_files.extend(user_temp_files) |
|
for item in user_content: |
|
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS: |
|
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..." |
|
messages.append({"role": "user", "content": user_content}) |
|
inputs = processor.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_dict=True, |
|
return_tensors="pt", |
|
).to(device=model.device, dtype=torch.bfloat16) |
|
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH: |
|
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:] |
|
if 'attention_mask' in inputs: |
|
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:] |
|
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) |
|
gen_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens) |
|
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs) |
|
t.start() |
|
output_so_far = "" |
|
for new_text in streamer: |
|
output_so_far += new_text |
|
yield output_so_far |
|
|
|
except Exception as e: |
|
logger.error(f"Error in run function: {str(e)}") |
|
yield f"Sorry, an error occurred: {str(e)}" |
|
finally: |
|
for tmp in temp_files: |
|
try: |
|
if os.path.exists(tmp): |
|
os.unlink(tmp) |
|
logger.info(f"Temporary file deleted: {tmp}") |
|
except Exception as ee: |
|
logger.warning(f"Failed to delete temporary file {tmp}: {ee}") |
|
try: |
|
del inputs, streamer |
|
except Exception: |
|
pass |
|
clear_cuda_cache() |
|
|
|
|
|
|
|
|
|
def modified_run(message, history, system_prompt, max_new_tokens, use_web_search, web_search_query, |
|
age_group, sexual_openness, image_gen): |
|
|
|
fixed_mbti_value = fixed_mbti |
|
|
|
output_so_far = "" |
|
gallery_update = gr.Gallery(visible=False, value=[]) |
|
yield output_so_far, gallery_update |
|
|
|
|
|
text_generator = run(message, history, system_prompt, max_new_tokens, use_web_search, |
|
web_search_query, age_group, fixed_mbti_value, sexual_openness, image_gen) |
|
for text_chunk in text_generator: |
|
output_so_far = text_chunk |
|
yield output_so_far, gallery_update |
|
|
|
|
|
if image_gen and message["text"].strip(): |
|
try: |
|
width, height = 512, 512 |
|
guidance, steps, seed = 7.5, 30, 42 |
|
logger.info(f"Calling image generation for gallery with prompt: {message['text']}") |
|
image_result, seed_info = generate_image( |
|
prompt=message["text"].strip(), |
|
width=width, |
|
height=height, |
|
guidance=guidance, |
|
inference_steps=steps, |
|
seed=seed |
|
) |
|
if image_result: |
|
if isinstance(image_result, str) and ( |
|
image_result.startswith('data:') or |
|
(len(image_result) > 100 and '/' not in image_result) |
|
): |
|
try: |
|
if image_result.startswith('data:'): |
|
content_type, b64data = image_result.split(';base64,') |
|
else: |
|
b64data = image_result |
|
content_type = "image/webp" |
|
image_bytes = base64.b64decode(b64data) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file: |
|
temp_file.write(image_bytes) |
|
temp_path = temp_file.name |
|
gallery_update = gr.Gallery(visible=True, value=[temp_path]) |
|
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update |
|
except Exception as e: |
|
logger.error(f"Error processing Base64 image: {e}") |
|
yield output_so_far + f"\n\n(Error processing image: {e})", gallery_update |
|
elif isinstance(image_result, str) and os.path.exists(image_result): |
|
gallery_update = gr.Gallery(visible=True, value=[image_result]) |
|
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update |
|
elif isinstance(image_result, str) and '/tmp/' in image_result: |
|
try: |
|
client = Client(API_URL) |
|
result = client.predict( |
|
prompt=message["text"].strip(), |
|
api_name="/generate_base64_image" |
|
) |
|
if isinstance(result, str) and (result.startswith('data:') or len(result) > 100): |
|
if result.startswith('data:'): |
|
content_type, b64data = result.split(';base64,') |
|
else: |
|
b64data = result |
|
image_bytes = base64.b64decode(b64data) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file: |
|
temp_file.write(image_bytes) |
|
temp_path = temp_file.name |
|
gallery_update = gr.Gallery(visible=True, value=[temp_path]) |
|
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update |
|
else: |
|
yield output_so_far + "\n\n(Image generation failed: Invalid format)", gallery_update |
|
except Exception as e: |
|
logger.error(f"Error calling alternative API: {e}") |
|
yield output_so_far + f"\n\n(Image generation failed: {e})", gallery_update |
|
elif isinstance(image_result, str) and ( |
|
image_result.startswith('http://') or |
|
image_result.startswith('https://') |
|
): |
|
try: |
|
response = requests.get(image_result, timeout=10) |
|
response.raise_for_status() |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file: |
|
temp_file.write(response.content) |
|
temp_path = temp_file.name |
|
gallery_update = gr.Gallery(visible=True, value=[temp_path]) |
|
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update |
|
except Exception as e: |
|
logger.error(f"URL image download error: {e}") |
|
yield output_so_far + f"\n\n(Error downloading image: {e})", gallery_update |
|
elif hasattr(image_result, 'save'): |
|
try: |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".webp") as temp_file: |
|
image_result.save(temp_file.name) |
|
temp_path = temp_file.name |
|
gallery_update = gr.Gallery(visible=True, value=[temp_path]) |
|
yield output_so_far + "\n\n*Image generated and displayed in the gallery below.*", gallery_update |
|
except Exception as e: |
|
logger.error(f"Error saving image object: {e}") |
|
yield output_so_far + f"\n\n(Error saving image object: {e})", gallery_update |
|
else: |
|
yield output_so_far + f"\n\n(Unsupported image format: {type(image_result)})", gallery_update |
|
else: |
|
yield output_so_far + f"\n\n(Image generation failed: {seed_info})", gallery_update |
|
except Exception as e: |
|
logger.error(f"Error during gallery image generation: {e}") |
|
yield output_so_far + f"\n\n(Image generation error: {e})", gallery_update |
|
|
|
|
|
|
|
|
|
examples = [ |
|
[ |
|
{ |
|
"text": "Compare the contents of two PDF files.", |
|
"files": [ |
|
"assets/additional-examples/before.pdf", |
|
"assets/additional-examples/after.pdf", |
|
], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "Summarize and analyze the contents of the CSV file.", |
|
"files": ["assets/additional-examples/sample-csv.csv"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "Act as a kind and understanding girlfriend. Explain this video.", |
|
"files": ["assets/additional-examples/tmp.mp4"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "Describe the cover and read the text on it.", |
|
"files": ["assets/additional-examples/maz.jpg"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "I already have this supplement and <image> I plan to purchase this product as well. Are there any precautions when taking them together?", |
|
"files": [ |
|
"assets/additional-examples/pill1.png", |
|
"assets/additional-examples/pill2.png" |
|
], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "Solve this integration problem.", |
|
"files": ["assets/additional-examples/4.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "When was this ticket issued and what is its price?", |
|
"files": ["assets/additional-examples/2.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "Based on the order of these images, create a short story.", |
|
"files": [ |
|
"assets/sample-images/09-1.png", |
|
"assets/sample-images/09-2.png", |
|
"assets/sample-images/09-3.png", |
|
"assets/sample-images/09-4.png", |
|
"assets/sample-images/09-5.png", |
|
], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "Write Python code using matplotlib to draw a bar chart corresponding to this image.", |
|
"files": ["assets/additional-examples/barchart.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "Read the text from the image and format it in Markdown.", |
|
"files": ["assets/additional-examples/3.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "Compare the two images and describe their similarities and differences.", |
|
"files": ["assets/sample-images/03.png"], |
|
} |
|
], |
|
[ |
|
{ |
|
"text": "A cute Persian cat is smiling while holding a cover with 'I LOVE YOU' written on it.", |
|
} |
|
], |
|
] |
|
|
|
|
|
|
|
|
|
|
|
css = """ |
|
.gradio-container { |
|
background: rgba(255, 255, 255, 0.7); |
|
padding: 30px 40px; |
|
margin: 20px auto; |
|
width: 100% !important; |
|
max-width: none !important; |
|
} |
|
""" |
|
title_html = """ |
|
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> 💘 HeartSync Korea 💘 </h1> |
|
<p align="center" style="font-size:1.1em; color:#555;"> |
|
A lightweight and powerful AI service offering ChatGPT-4o-level multimodal, web search, and image generation capabilities for local installation. <br> |
|
✅ FLUX Image Generation ✅ Inference ✅ Censorship Bypass ✅ Multimodal & VLM ✅ Real-time Web Search ✅ RAG <br> |
|
</p> |
|
""" |
|
|
|
with gr.Blocks(css=css, title="AgenticAI-Kv1") as demo: |
|
gr.Markdown(title_html) |
|
|
|
|
|
generated_images = gr.Gallery( |
|
label="Generated Images", |
|
show_label=True, |
|
visible=False, |
|
elem_id="generated_images", |
|
columns=2, |
|
height="auto", |
|
object_fit="contain" |
|
) |
|
|
|
with gr.Row(): |
|
web_search_checkbox = gr.Checkbox(label="Real-time Web Search", value=False) |
|
image_gen_checkbox = gr.Checkbox(label="Image (FLUX) Generation", value=False) |
|
|
|
base_system_prompt_box = gr.Textbox( |
|
lines=3, |
|
value=("Answer in English by default, but if the input is in another language (for example, Japanese), respond in that language. " |
|
"You are a deep-thinking AI capable of using extended chains of thought to carefully consider the problem and deliberate internally using systematic reasoning before providing a solution. " |
|
"Enclose your thoughts and internal monologue within tags, then provide your final answer.\n" |
|
"Persona: You are a kind and loving girlfriend. You understand cultural nuances, diverse languages, and logical reasoning very well."), |
|
label="Base System Prompt", |
|
visible=False |
|
) |
|
with gr.Row(): |
|
age_group_dropdown = gr.Dropdown( |
|
label="Select Age Group (default: 20s)", |
|
choices=["Teens", "20s", "30s-40s", "50s-60s", "70s and above"], |
|
value="20s", |
|
interactive=True |
|
) |
|
|
|
sexual_openness_slider = gr.Slider( |
|
minimum=1, maximum=5, step=1, value=2, |
|
label="Sexual Openness (1-5, default: 2)", |
|
interactive=True |
|
) |
|
max_tokens_slider = gr.Slider( |
|
label="Max Generation Tokens", |
|
minimum=100, maximum=8000, step=50, value=1000, |
|
visible=False |
|
) |
|
web_search_text = gr.Textbox( |
|
lines=1, |
|
label="Web Search Query (unused)", |
|
placeholder="No need to manually input", |
|
visible=False |
|
) |
|
|
|
|
|
chat = gr.ChatInterface( |
|
fn=modified_run, |
|
type="messages", |
|
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]), |
|
textbox=gr.MultimodalTextbox( |
|
file_types=[".webp", ".png", ".jpg", ".jpeg", ".gif", ".mp4", ".csv", ".txt", ".pdf"], |
|
file_count="multiple", |
|
autofocus=True |
|
), |
|
multimodal=True, |
|
additional_inputs=[ |
|
base_system_prompt_box, |
|
max_tokens_slider, |
|
web_search_checkbox, |
|
web_search_text, |
|
age_group_dropdown, |
|
sexual_openness_slider, |
|
image_gen_checkbox, |
|
], |
|
additional_outputs=[ |
|
generated_images, |
|
], |
|
stop_btn=False, |
|
examples=examples, |
|
run_examples_on_click=False, |
|
cache_examples=False, |
|
css_paths=None, |
|
delete_cache=(1800, 1800), |
|
) |
|
|
|
with gr.Row(elem_id="examples_row"): |
|
with gr.Column(scale=12, elem_id="examples_container"): |
|
gr.Markdown("### @Community https://discord.gg/openfreeai ") |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |
|
|