Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| import os | |
| import re | |
| import tempfile | |
| from collections.abc import Iterator | |
| from threading import Thread | |
| import json | |
| import requests | |
| import cv2 | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from loguru import logger | |
| from PIL import Image | |
| from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer | |
| # CSV/TXT ๋ถ์ | |
| import pandas as pd | |
| # PDF ํ ์คํธ ์ถ์ถ | |
| import PyPDF2 | |
| ############################################################################## | |
| # SERPHouse API key from environment variable | |
| ############################################################################## | |
| SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "") | |
| ############################################################################## | |
| # ๊ฐ๋จํ ํค์๋ ์ถ์ถ ํจ์ (ํ๊ธ + ์ํ๋ฒณ + ์ซ์ + ๊ณต๋ฐฑ ๋ณด์กด) | |
| ############################################################################## | |
| def extract_keywords(text: str, top_k: int = 5) -> str: | |
| """ | |
| 1) ํ๊ธ(๊ฐ-ํฃ), ์์ด(a-zA-Z), ์ซ์(0-9), ๊ณต๋ฐฑ๋ง ๋จ๊น | |
| 2) ๊ณต๋ฐฑ ๊ธฐ์ค ํ ํฐ ๋ถ๋ฆฌ | |
| 3) ์ต๋ top_k๊ฐ๋ง | |
| """ | |
| text = re.sub(r"[^a-zA-Z0-9๊ฐ-ํฃ\s]", "", text) | |
| tokens = text.split() | |
| key_tokens = tokens[:top_k] | |
| return " ".join(key_tokens) | |
| ############################################################################## | |
| # SERPHouse Live endpoint ํธ์ถ | |
| # - ์์ 20๊ฐ ๊ฒฐ๊ณผ JSON์ LLM์ ๋๊ธธ ๋ link, snippet ๋ฑ ๋ชจ๋ ํฌํจ | |
| ############################################################################## | |
| def do_web_search(query: str) -> str: | |
| """ | |
| ์์ 20๊ฐ 'organic' ๊ฒฐ๊ณผ item ์ ์ฒด(์ ๋ชฉ, link, snippet ๋ฑ)๋ฅผ | |
| JSON ๋ฌธ์์ด ํํ๋ก ๋ฐํ | |
| """ | |
| try: | |
| url = "https://api.serphouse.com/serp/live" | |
| params = { | |
| "q": query, | |
| "domain": "google.com", | |
| "lang": "en", | |
| "device": "desktop", | |
| "serp_type": "web", | |
| "num_result": "20", | |
| "api_token": SERPHOUSE_API_KEY, | |
| } | |
| resp = requests.get(url, params=params, timeout=30) | |
| resp.raise_for_status() | |
| data = resp.json() | |
| results = data.get("results", {}) | |
| organic = results.get("results", {}).get("organic", []) | |
| if not organic: | |
| return "No web search results found." | |
| summary_lines = [] | |
| for idx, item in enumerate(organic[:20], start=1): | |
| item_json = json.dumps(item, ensure_ascii=False, indent=2) | |
| summary_lines.append(f"Result {idx}:\n{item_json}\n") | |
| return "\n".join(summary_lines) | |
| except Exception as e: | |
| logger.error(f"Web search failed: {e}") | |
| return f"Web search failed: {str(e)}" | |
| ############################################################################## | |
| # ๋ชจ๋ธ/ํ๋ก์ธ์ ๋ก๋ฉ | |
| ############################################################################## | |
| MAX_CONTENT_CHARS = 4000 | |
| model_id = os.getenv("MODEL_ID", "VIDraft/Gemma3-R1945-27B") | |
| processor = AutoProcessor.from_pretrained(model_id, padding_side="left") | |
| model = Gemma3ForConditionalGeneration.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16, | |
| attn_implementation="eager" | |
| ) | |
| MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5")) | |
| ############################################################################## | |
| # CSV, TXT, PDF ๋ถ์ ํจ์ | |
| ############################################################################## | |
| def analyze_csv_file(path: str) -> str: | |
| """ | |
| CSV ํ์ผ์ ์ ์ฒด ๋ฌธ์์ด๋ก ๋ณํ. ๋๋ฌด ๊ธธ ๊ฒฝ์ฐ ์ผ๋ถ๋ง ํ์. | |
| """ | |
| try: | |
| df = pd.read_csv(path) | |
| if df.shape[0] > 50 or df.shape[1] > 10: | |
| df = df.iloc[:50, :10] | |
| df_str = df.to_string() | |
| if len(df_str) > MAX_CONTENT_CHARS: | |
| df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
| return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}" | |
| except Exception as e: | |
| return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}" | |
| def analyze_txt_file(path: str) -> str: | |
| """ | |
| TXT ํ์ผ ์ ๋ฌธ ์ฝ๊ธฐ. ๋๋ฌด ๊ธธ๋ฉด ์ผ๋ถ๋ง ํ์. | |
| """ | |
| try: | |
| with open(path, "r", encoding="utf-8") as f: | |
| text = f.read() | |
| if len(text) > MAX_CONTENT_CHARS: | |
| text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
| return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}" | |
| except Exception as e: | |
| return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}" | |
| def pdf_to_markdown(pdf_path: str) -> str: | |
| """ | |
| PDF โ Markdown. ํ์ด์ง๋ณ๋ก ๊ฐ๋จํ ํ ์คํธ ์ถ์ถ. | |
| """ | |
| text_chunks = [] | |
| try: | |
| with open(pdf_path, "rb") as f: | |
| reader = PyPDF2.PdfReader(f) | |
| max_pages = min(5, len(reader.pages)) | |
| for page_num in range(max_pages): | |
| page = reader.pages[page_num] | |
| page_text = page.extract_text() or "" | |
| page_text = page_text.strip() | |
| if page_text: | |
| if len(page_text) > MAX_CONTENT_CHARS // max_pages: | |
| page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)" | |
| text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n") | |
| if len(reader.pages) > max_pages: | |
| text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...") | |
| except Exception as e: | |
| return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}" | |
| full_text = "\n".join(text_chunks) | |
| if len(full_text) > MAX_CONTENT_CHARS: | |
| full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
| return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}" | |
| ############################################################################## | |
| # ์ด๋ฏธ์ง/๋น๋์ค ์ ๋ก๋ ์ ํ ๊ฒ์ฌ | |
| ############################################################################## | |
| def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: | |
| image_count = 0 | |
| video_count = 0 | |
| for path in paths: | |
| if path.endswith(".mp4"): | |
| video_count += 1 | |
| elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE): | |
| image_count += 1 | |
| return image_count, video_count | |
| def count_files_in_history(history: list[dict]) -> tuple[int, int]: | |
| image_count = 0 | |
| video_count = 0 | |
| for item in history: | |
| if item["role"] != "user" or isinstance(item["content"], str): | |
| continue | |
| if isinstance(item["content"], list) and len(item["content"]) > 0: | |
| file_path = item["content"][0] | |
| if isinstance(file_path, str): | |
| if file_path.endswith(".mp4"): | |
| video_count += 1 | |
| elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE): | |
| image_count += 1 | |
| return image_count, video_count | |
| def validate_media_constraints(message: dict, history: list[dict]) -> bool: | |
| media_files = [] | |
| for f in message["files"]: | |
| if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"): | |
| media_files.append(f) | |
| new_image_count, new_video_count = count_files_in_new_message(media_files) | |
| history_image_count, history_video_count = count_files_in_history(history) | |
| image_count = history_image_count + new_image_count | |
| video_count = history_video_count + new_video_count | |
| if video_count > 1: | |
| gr.Warning("Only one video is supported.") | |
| return False | |
| if video_count == 1: | |
| if image_count > 0: | |
| gr.Warning("Mixing images and videos is not allowed.") | |
| return False | |
| if "<image>" in message["text"]: | |
| gr.Warning("Using <image> tags with video files is not supported.") | |
| return False | |
| if video_count == 0 and image_count > MAX_NUM_IMAGES: | |
| gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.") | |
| return False | |
| if "<image>" in message["text"]: | |
| image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] | |
| image_tag_count = message["text"].count("<image>") | |
| if image_tag_count != len(image_files): | |
| gr.Warning("The number of <image> tags in the text does not match the number of image files.") | |
| return False | |
| return True | |
| ############################################################################## | |
| # ๋น๋์ค ์ฒ๋ฆฌ | |
| ############################################################################## | |
| def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: | |
| vidcap = cv2.VideoCapture(video_path) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| frame_interval = max(int(fps), int(total_frames / 10)) | |
| frames = [] | |
| for i in range(0, total_frames, frame_interval): | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| if len(frames) >= 5: | |
| break | |
| vidcap.release() | |
| return frames | |
| def process_video(video_path: str) -> list[dict]: | |
| content = [] | |
| frames = downsample_video(video_path) | |
| for frame in frames: | |
| pil_image, timestamp = frame | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
| pil_image.save(temp_file.name) | |
| content.append({"type": "text", "text": f"Frame {timestamp}:"}) | |
| content.append({"type": "image", "url": temp_file.name}) | |
| logger.debug(f"{content=}") | |
| return content | |
| ############################################################################## | |
| # interleaved <image> ์ฒ๋ฆฌ | |
| ############################################################################## | |
| def process_interleaved_images(message: dict) -> list[dict]: | |
| parts = re.split(r"(<image>)", message["text"]) | |
| content = [] | |
| image_index = 0 | |
| image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] | |
| for part in parts: | |
| if part == "<image>" and image_index < len(image_files): | |
| content.append({"type": "image", "url": image_files[image_index]}) | |
| image_index += 1 | |
| elif part.strip(): | |
| content.append({"type": "text", "text": part.strip()}) | |
| else: | |
| if isinstance(part, str) and part != "<image>": | |
| content.append({"type": "text", "text": part}) | |
| return content | |
| ############################################################################## | |
| # PDF + CSV + TXT + ์ด๋ฏธ์ง/๋น๋์ค | |
| ############################################################################## | |
| def is_image_file(file_path: str) -> bool: | |
| return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE)) | |
| def is_video_file(file_path: str) -> bool: | |
| return file_path.endswith(".mp4") | |
| def is_document_file(file_path: str) -> bool: | |
| return ( | |
| file_path.lower().endswith(".pdf") | |
| or file_path.lower().endswith(".csv") | |
| or file_path.lower().endswith(".txt") | |
| ) | |
| def process_new_user_message(message: dict) -> list[dict]: | |
| if not message["files"]: | |
| return [{"type": "text", "text": message["text"]}] | |
| video_files = [f for f in message["files"] if is_video_file(f)] | |
| image_files = [f for f in message["files"] if is_image_file(f)] | |
| csv_files = [f for f in message["files"] if f.lower().endswith(".csv")] | |
| txt_files = [f for f in message["files"] if f.lower().endswith(".txt")] | |
| pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")] | |
| content_list = [{"type": "text", "text": message["text"]}] | |
| for csv_path in csv_files: | |
| csv_analysis = analyze_csv_file(csv_path) | |
| content_list.append({"type": "text", "text": csv_analysis}) | |
| for txt_path in txt_files: | |
| txt_analysis = analyze_txt_file(txt_path) | |
| content_list.append({"type": "text", "text": txt_analysis}) | |
| for pdf_path in pdf_files: | |
| pdf_markdown = pdf_to_markdown(pdf_path) | |
| content_list.append({"type": "text", "text": pdf_markdown}) | |
| if video_files: | |
| content_list += process_video(video_files[0]) | |
| return content_list | |
| if "<image>" in message["text"] and image_files: | |
| interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files}) | |
| if content_list and content_list[0]["type"] == "text": | |
| content_list = content_list[1:] | |
| return interleaved_content + content_list | |
| else: | |
| for img_path in image_files: | |
| content_list.append({"type": "image", "url": img_path}) | |
| return content_list | |
| ############################################################################## | |
| # history -> LLM ๋ฉ์์ง ๋ณํ | |
| ############################################################################## | |
| def process_history(history: list[dict]) -> list[dict]: | |
| messages = [] | |
| current_user_content: list[dict] = [] | |
| for item in history: | |
| if item["role"] == "assistant": | |
| if current_user_content: | |
| messages.append({"role": "user", "content": current_user_content}) | |
| current_user_content = [] | |
| messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) | |
| else: | |
| content = item["content"] | |
| if isinstance(content, str): | |
| current_user_content.append({"type": "text", "text": content}) | |
| elif isinstance(content, list) and len(content) > 0: | |
| file_path = content[0] | |
| if is_image_file(file_path): | |
| current_user_content.append({"type": "image", "url": file_path}) | |
| else: | |
| current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"}) | |
| if current_user_content: | |
| messages.append({"role": "user", "content": current_user_content}) | |
| return messages | |
| ############################################################################## | |
| # ๋ฉ์ธ ์ถ๋ก ํจ์ (web search ์ฒดํฌ ์ ์๋ ํค์๋์ถ์ถ->๊ฒ์->๊ฒฐ๊ณผ system msg) | |
| ############################################################################## | |
| def run( | |
| message: dict, | |
| history: list[dict], | |
| system_prompt: str = "", | |
| max_new_tokens: int = 512, | |
| use_web_search: bool = False, | |
| web_search_query: str = "", | |
| ) -> Iterator[str]: | |
| if not validate_media_constraints(message, history): | |
| yield "" | |
| return | |
| try: | |
| combined_system_msg = "" | |
| # ๋ด๋ถ์ ์ผ๋ก๋ง ์ฌ์ฉ (UI์์๋ ๋ณด์ด์ง ์์) | |
| if system_prompt.strip(): | |
| combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n" | |
| if use_web_search: | |
| user_text = message["text"] | |
| ws_query = extract_keywords(user_text, top_k=5) | |
| if ws_query.strip(): | |
| logger.info(f"[Auto WebSearch Keyword] {ws_query!r}") | |
| ws_result = do_web_search(ws_query) | |
| combined_system_msg += f"[Search top-20 Full Items Based on user prompt]\n{ws_result}\n\n" | |
| # >>> ์ถ๊ฐ๋ ์๋ด ๋ฌธ๊ตฌ (๊ฒ์ ๊ฒฐ๊ณผ์ link ๋ฑ ์ถ์ฒ๋ฅผ ํ์ฉ) | |
| combined_system_msg += "[์ฐธ๊ณ : ์ ๊ฒ์๊ฒฐ๊ณผ ๋ด์ฉ๊ณผ link๋ฅผ ์ถ์ฒ๋ก ์ธ์ฉํ์ฌ ๋ต๋ณํด ์ฃผ์ธ์.]\n\n" | |
| else: | |
| combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n" | |
| messages = [] | |
| if combined_system_msg.strip(): | |
| messages.append({ | |
| "role": "system", | |
| "content": [{"type": "text", "text": combined_system_msg.strip()}], | |
| }) | |
| messages.extend(process_history(history)) | |
| user_content = process_new_user_message(message) | |
| for item in user_content: | |
| if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS: | |
| item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
| messages.append({"role": "user", "content": user_content}) | |
| inputs = processor.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| ).to(device=model.device, dtype=torch.bfloat16) | |
| streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) | |
| gen_kwargs = dict( | |
| inputs, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| ) | |
| t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs) | |
| t.start() | |
| output = "" | |
| for new_text in streamer: | |
| output += new_text | |
| yield output | |
| except Exception as e: | |
| logger.error(f"Error in run: {str(e)}") | |
| yield f"์ฃ์กํฉ๋๋ค. ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}" | |
| ############################################################################## | |
| # [์ถ๊ฐ] ๋ณ๋ ํจ์์์ model.generate(...)๋ฅผ ํธ์ถ, OOM ์บ์น | |
| ############################################################################## | |
| def _model_gen_with_oom_catch(**kwargs): | |
| """ | |
| ๋ณ๋ ์ค๋ ๋์์ OutOfMemoryError๋ฅผ ์ก์์ฃผ๊ธฐ ์ํด | |
| """ | |
| try: | |
| model.generate(**kwargs) | |
| except torch.cuda.OutOfMemoryError: | |
| raise RuntimeError( | |
| "[OutOfMemoryError] GPU ๋ฉ๋ชจ๋ฆฌ๊ฐ ๋ถ์กฑํฉ๋๋ค. " | |
| "Max New Tokens์ ์ค์ด๊ฑฐ๋, ํ๋กฌํํธ ๊ธธ์ด๋ฅผ ์ค์ฌ์ฃผ์ธ์." | |
| ) | |
| ############################################################################## | |
| # ์์๋ค (ํ๊ธํ) | |
| ############################################################################## | |
| examples = [ | |
| [ | |
| { | |
| "text": "๋ PDF ํ์ผ ๋ด์ฉ์ ๋น๊ตํ๋ผ.", | |
| "files": [ | |
| "assets/additional-examples/before.pdf", | |
| "assets/additional-examples/after.pdf", | |
| ], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "CSV ํ์ผ ๋ด์ฉ์ ์์ฝ, ๋ถ์ํ๋ผ", | |
| "files": ["assets/additional-examples/sample-csv.csv"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "์ด ์์์ ๋ด์ฉ์ ์ค๋ช ํ๋ผ", | |
| "files": ["assets/additional-examples/tmp.mp4"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "ํ์ง ๋ด์ฉ์ ์ค๋ช ํ๊ณ ๊ธ์๋ฅผ ์ฝ์ด์ฃผ์ธ์.", | |
| "files": ["assets/additional-examples/maz.jpg"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "์ด๋ฏธ ์ด ์์์ ๋ฅผ <image> ๊ฐ์ง๊ณ ์๊ณ , ์ด ์ ํ <image>์ ์๋ก ์ฌ๋ ค ํฉ๋๋ค. ํจ๊ป ์ญ์ทจํ ๋ ์ฃผ์ํด์ผ ํ ์ ์ด ์์๊น์?", | |
| "files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "์ด ์ ๋ถ์ ํ์ด์ฃผ์ธ์.", | |
| "files": ["assets/additional-examples/4.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "์ด ํฐ์ผ์ ์ธ์ ๋ฐ๊ธ๋ ๊ฒ์ด๊ณ , ๊ฐ๊ฒฉ์ ์ผ๋ง์ธ๊ฐ์?", | |
| "files": ["assets/additional-examples/2.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "์ด๋ฏธ์ง๋ค์ ์์๋ฅผ ๋ฐํ์ผ๋ก ์งง์ ์ด์ผ๊ธฐ๋ฅผ ๋ง๋ค์ด ์ฃผ์ธ์.", | |
| "files": [ | |
| "assets/sample-images/09-1.png", | |
| "assets/sample-images/09-2.png", | |
| "assets/sample-images/09-3.png", | |
| "assets/sample-images/09-4.png", | |
| "assets/sample-images/09-5.png", | |
| ], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "๋์ผํ ๋ง๋ ๊ทธ๋ํ๋ฅผ ๊ทธ๋ฆฌ๋ matplotlib ์ฝ๋๋ฅผ ์์ฑํด์ฃผ์ธ์.", | |
| "files": ["assets/additional-examples/barchart.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "์ด๋ฏธ์ง์ ์๋ ํ ์คํธ๋ฅผ ๊ทธ๋๋ก ์ฝ์ด์ ๋งํฌ๋ค์ด ํํ๋ก ์ ์ด์ฃผ์ธ์.", | |
| "files": ["assets/additional-examples/3.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "์ด ํ์งํ์๋ ๋ฌด์จ ๋ฌธ๊ตฌ๊ฐ ์ ํ ์๋์?", | |
| "files": ["assets/sample-images/02.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "๋ ์ด๋ฏธ์ง๋ฅผ ๋น๊ตํด์ ๊ณตํต์ ๊ณผ ์ฐจ์ด์ ์ ๋งํด์ฃผ์ธ์.", | |
| "files": ["assets/sample-images/03.png"], | |
| } | |
| ], | |
| [ | |
| { | |
| "text": "๋๋ ์น๊ทผํ๊ณ ๋ค์ ํ ์ดํด์ฌ ๋ง์ ์ฌ์์น๊ตฌ ์ญํ ์ด๋ค.", | |
| } | |
| ], | |
| [ | |
| { | |
| "text": """์ธ๋ฅ์ ๋ง์ง๋ง ์ํ(Humanity's Last Exam) ๋ฌธ์ ๋ฅผ ํ์ดํ๋ผ. How does Guarani's nominal tense/aspect system interact with effected objects in sentences? | |
| Answer Choices: | |
| A. Effected objects cannot take nominal tense/aspect markers | |
| B. Effected objects require the post-stative -kue | |
| C. Effected objects must be marked with the destinative -rรฃ | |
| D. Nominal tense/aspect is optional for effected objects | |
| E. Effected objects use a special set of tense/aspect markers""", | |
| } | |
| ], | |
| ] | |
| ############################################################################## | |
| # Gradio UI (Blocks) ๊ตฌ์ฑ (์ข์ธก ์ฌ์ด๋ ๋ฉ๋ด ์์ด ์ ์ฒดํ๋ฉด ์ฑํ ) | |
| ############################################################################## | |
| css = """ | |
| /* 1) UI๋ฅผ ์ฒ์๋ถํฐ ๊ฐ์ฅ ๋๊ฒ (width 100%) ๊ณ ์ ํ์ฌ ํ์ */ | |
| .gradio-container { | |
| background: rgba(255, 255, 255, 0.95); | |
| border-radius: 15px; | |
| padding: 30px 40px; | |
| box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3); | |
| margin: 20px auto; /* ์์๋ ์ฌ๋ฐฑ๋ง ์ ์ง */ | |
| width: 100% !important; | |
| max-width: none !important; /* 1200px ์ ํ ์ ๊ฑฐ */ | |
| } | |
| .fillable { | |
| width: 100% !important; | |
| max-width: 100% !important; | |
| } | |
| /* 2) ๋ฐฐ๊ฒฝ์ ์ฐํ๊ณ ํฌ๋ช ํ ํ์คํ ํค ๊ทธ๋ผ๋์ธํธ๋ก ๋ณ๊ฒฝ */ | |
| body { | |
| background: linear-gradient( | |
| 135deg, | |
| rgba(255, 229, 210, 0.6), | |
| rgba(255, 240, 245, 0.6) | |
| ); | |
| margin: 0; | |
| padding: 0; | |
| font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; | |
| color: #333; | |
| } | |
| /* ๋ฒํผ ์์๋ ๊ธฐ์กด์ ์ง์ ๋ถ์-์ฃผํฉ โ ํ์คํ ๊ณ์ด๋ก ์ฐํ๊ฒ */ | |
| button, .btn { | |
| background: linear-gradient( | |
| 90deg, | |
| rgba(255, 210, 220, 0.7), | |
| rgba(255, 190, 200, 0.7) | |
| ) !important; | |
| border: none; | |
| color: #333; /* ๊ธ์ ์ ๋ณด์ด๋๋ก ์ฝ๊ฐ ์งํ ๊ธ์จ */ | |
| padding: 12px 24px; | |
| text-transform: uppercase; | |
| font-weight: bold; | |
| letter-spacing: 1px; | |
| border-radius: 5px; | |
| cursor: pointer; | |
| transition: transform 0.2s ease-in-out; | |
| } | |
| button:hover, .btn:hover { | |
| transform: scale(1.03); | |
| } | |
| #examples_container { | |
| margin: auto; | |
| width: 90%; | |
| } | |
| #examples_row { | |
| justify-content: center; | |
| } | |
| """ | |
| title_html = """ | |
| <h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> ๐ค Gemma3-R1945-27B </h1> | |
| <p align="center" style="font-size:1.1em; color:#555;"> | |
| โ Agentic AI Platform โ Reasoning & Uncensored โ Multimodal & VLM โ Deep-Research & RAG <br> | |
| Operates on an โ 'NVIDIA A100 GPU' as an independent local server, enhancing security and preventing information leakage.<br> | |
| @Based by 'MS Gemma-3-27b' / @Powered by 'MOUSE-II'(VIDRAFT) | |
| </p> | |
| """ | |
| with gr.Blocks(css=css, title="Gemma3-R1945-27B") as demo: | |
| gr.Markdown(title_html) | |
| # ์น์์น ์ต์ ์ ํ๋ฉด์ ํ์ (ํ์ง๋ง ์์คํ ํ๋กฌํํธ, ํ ํฐ ์ฌ๋ผ์ด๋ ๋ฑ์ ๊ฐ์ถค) | |
| web_search_checkbox = gr.Checkbox( | |
| label="Use Web Search (์๋ ํค์๋ ์ถ์ถ)", | |
| value=False | |
| ) | |
| # ๋ด๋ถ์ ์ผ๋ก ์ฐ์ด์ง๋ง ํ๋ฉด์๋ ๋ ธ์ถ๋์ง ์๋๋ก ์ค์ | |
| system_prompt_box = gr.Textbox( | |
| lines=3, | |
| value="You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. Please answer in Korean.You have the ability to read English sources, but you **must always speak in Korean**.Even if the search results are in English, answer in Korean.", | |
| visible=False # ํ๋ฉด์์ ๊ฐ์ถค | |
| ) | |
| max_tokens_slider = gr.Slider( | |
| label="Max New Tokens", | |
| minimum=100, | |
| maximum=8000, | |
| step=50, | |
| value=1000, | |
| visible=False # ํ๋ฉด์์ ๊ฐ์ถค | |
| ) | |
| web_search_text = gr.Textbox( | |
| lines=1, | |
| label="(Unused) Web Search Query", | |
| placeholder="No direct input needed", | |
| visible=False # ํ๋ฉด์์ ๊ฐ์ถค | |
| ) | |
| # ์ฑํ ์ธํฐํ์ด์ค ๊ตฌ์ฑ | |
| chat = gr.ChatInterface( | |
| fn=run, | |
| type="messages", | |
| chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]), | |
| textbox=gr.MultimodalTextbox( | |
| file_types=[ | |
| ".webp", ".png", ".jpg", ".jpeg", ".gif", | |
| ".mp4", ".csv", ".txt", ".pdf" | |
| ], | |
| file_count="multiple", | |
| autofocus=True | |
| ), | |
| multimodal=True, | |
| additional_inputs=[ | |
| system_prompt_box, | |
| max_tokens_slider, | |
| web_search_checkbox, | |
| web_search_text, | |
| ], | |
| stop_btn=False, | |
| title='<a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a>', | |
| examples=examples, | |
| run_examples_on_click=False, | |
| cache_examples=False, | |
| css_paths=None, | |
| delete_cache=(1800, 1800), | |
| ) | |
| # ์์ ์น์ - ์ด๋ฏธ ChatInterface์ examples๊ฐ ์ค์ ๋์ด ์์ผ๋ฏ๋ก ์ฌ๊ธฐ์๋ ์ค๋ช ๋ง ํ์ | |
| with gr.Row(elem_id="examples_row"): | |
| with gr.Column(scale=12, elem_id="examples_container"): | |
| gr.Markdown("### Example Inputs (click to load)") | |
| if __name__ == "__main__": | |
| # ๋ก์ปฌ์์๋ง ์คํ ์ | |
| demo.launch() | |