Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,769 Bytes
5f364b5 f4cf641 c103ac7 f4cf641 5f364b5 c103ac7 5f364b5 f4cf641 12d6cf5 8268b44 ec4cebf 5f364b5 ec4cebf 8268b44 ec4cebf 8116465 ec4cebf 8116465 ec4cebf f4cf641 ec4cebf 8575388 ec4cebf f4cf641 ec4cebf 8268b44 ec4cebf 8575388 ec4cebf f4cf641 ec4cebf f4cf641 ec4cebf f4cf641 ec4cebf f4cf641 ec4cebf 1b75f51 ec4cebf 8116465 ec4cebf 1e531a7 8268b44 ec4cebf 1e531a7 ec4cebf 8268b44 ec4cebf 8575388 ec4cebf 8b98825 ec4cebf c103ac7 8268b44 ec4cebf f4cf641 8268b44 ec4cebf 5f364b5 ec4cebf 5f364b5 8268b44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import logging
import gc
import time
import hashlib
from dataclasses import dataclass
from typing import Optional, Tuple
from functools import wraps
# 로깅 설정
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# 설정 관리
@dataclass
class VideoGenerationConfig:
model_id: str = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
lora_repo_id: str = "Kijai/WanVideo_comfy"
lora_filename: str = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
mod_value: int = 32
default_height: int = 512
default_width: int = 896
max_area: float = 480.0 * 832.0
slider_min_h: int = 128
slider_max_h: int = 896
slider_min_w: int = 128
slider_max_w: int = 896
fixed_fps: int = 24
min_frames: int = 8
max_frames: int = 81
default_prompt: str = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt: str = "static, blurred, low quality, watermark, text"
config = VideoGenerationConfig()
MAX_SEED = np.iinfo(np.int32).max
# 성능 측정 데코레이터
def measure_time(func):
@wraps(func)
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
logger.info(f"{func.__name__} took {time.time()-start:.2f}s")
return result
return wrapper
# 모델 관리자
class ModelManager:
def __init__(self):
self._pipe = None
self._is_loaded = False
@property
def pipe(self):
if not self._is_loaded:
self._load_model()
return self._pipe
@measure_time
def _load_model(self):
logger.info("Loading model...")
image_encoder = CLIPVisionModel.from_pretrained(
config.model_id, subfolder="image_encoder", torch_dtype=torch.float32
)
vae = AutoencoderKLWan.from_pretrained(
config.model_id, subfolder="vae", torch_dtype=torch.float32
)
self._pipe = WanImageToVideoPipeline.from_pretrained(
config.model_id, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
self._pipe.scheduler = UniPCMultistepScheduler.from_config(
self._pipe.scheduler.config, flow_shift=8.0
)
self._pipe.to("cuda")
causvid_path = hf_hub_download(
repo_id=config.lora_repo_id, filename=config.lora_filename
)
self._pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
self._pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
self._pipe.fuse_lora()
self._is_loaded = True
logger.info("Model loaded successfully")
model_manager = ModelManager()
# 비디오 생성기 클래스
class VideoGenerator:
def __init__(self, config: VideoGenerationConfig, model_manager: ModelManager):
self.config = config
self.model_manager = model_manager
def calculate_dimensions(self, image: Image.Image) -> Tuple[int, int]:
orig_w, orig_h = image.size
if orig_w <= 0 or orig_h <= 0:
return self.config.default_height, self.config.default_width
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(self.config.max_area * aspect_ratio))
calc_w = round(np.sqrt(self.config.max_area / aspect_ratio))
calc_h = max(self.config.mod_value, (calc_h // self.config.mod_value) * self.config.mod_value)
calc_w = max(self.config.mod_value, (calc_w // self.config.mod_value) * self.config.mod_value)
new_h = int(np.clip(calc_h, self.config.slider_min_h,
(self.config.slider_max_h // self.config.mod_value) * self.config.mod_value))
new_w = int(np.clip(calc_w, self.config.slider_min_w,
(self.config.slider_max_w // self.config.mod_value) * self.config.mod_value))
return new_h, new_w
def validate_inputs(self, image: Image.Image, prompt: str, height: int,
width: int, duration: float, steps: int) -> Tuple[bool, Optional[str]]:
if image is None:
return False, "🖼️ Please upload an input image"
if not prompt or len(prompt.strip()) == 0:
return False, "✍️ Please provide a prompt"
if len(prompt) > 500:
return False, "⚠️ Prompt is too long (max 500 characters)"
if duration < self.config.min_frames / self.config.fixed_fps:
return False, f"⏱️ Duration too short (min {self.config.min_frames/self.config.fixed_fps:.1f}s)"
if duration > self.config.max_frames / self.config.fixed_fps:
return False, f"⏱️ Duration too long (max {self.config.max_frames/self.config.fixed_fps:.1f}s)"
return True, None
def generate_unique_filename(self, seed: int) -> str:
timestamp = int(time.time())
unique_str = f"{timestamp}_{seed}_{random.randint(1000, 9999)}"
hash_obj = hashlib.md5(unique_str.encode())
return f"video_{hash_obj.hexdigest()[:8]}.mp4"
video_generator = VideoGenerator(config, model_manager)
# Gradio 함수들
def handle_image_upload(image):
if image is None:
return gr.update(value=config.default_height), gr.update(value=config.default_width)
try:
if not isinstance(image, Image.Image):
raise ValueError("Invalid image format")
new_h, new_w = video_generator.calculate_dimensions(image)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
logger.error(f"Error processing image: {e}")
gr.Warning("⚠️ Error processing image")
return gr.update(value=config.default_height), gr.update(value=config.default_width)
def get_duration(input_image, prompt, height, width, negative_prompt,
duration_seconds, guidance_scale, steps, seed, randomize_seed, progress):
if steps > 4 and duration_seconds > 2:
return 90
elif steps > 4 or duration_seconds > 2:
return 75
else:
return 60
@spaces.GPU(duration=get_duration)
@measure_time
def generate_video(input_image, prompt, height, width,
negative_prompt=config.default_negative_prompt,
duration_seconds=2, guidance_scale=1, steps=4,
seed=42, randomize_seed=False,
progress=gr.Progress(track_tqdm=True)):
progress(0.1, desc="🔍 Validating inputs...")
# 입력 검증
is_valid, error_msg = video_generator.validate_inputs(
input_image, prompt, height, width, duration_seconds, steps
)
if not is_valid:
raise gr.Error(error_msg)
try:
progress(0.2, desc="🎯 Preparing image...")
target_h = max(config.mod_value, (int(height) // config.mod_value) * config.mod_value)
target_w = max(config.mod_value, (int(width) // config.mod_value) * config.mod_value)
num_frames = np.clip(int(round(duration_seconds * config.fixed_fps)),
config.min_frames, config.max_frames)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
progress(0.3, desc="🎨 Loading model...")
pipe = model_manager.pipe
progress(0.4, desc="🎬 Generating video frames...")
with torch.inference_mode():
output_frames_list = pipe(
image=resized_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=target_h,
width=target_w,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
progress(0.9, desc="💾 Saving video...")
filename = video_generator.generate_unique_filename(current_seed)
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=config.fixed_fps)
progress(1.0, desc="✨ Complete!")
return video_path, current_seed
finally:
# 메모리 정리
if 'output_frames_list' in locals():
del output_frames_list
gc.collect()
torch.cuda.empty_cache()
# CSS 스타일
css = """
.container {
max-width: 1200px;
margin: auto;
padding: 20px;
}
.header {
text-align: center;
margin-bottom: 30px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 40px;
border-radius: 20px;
color: white;
box-shadow: 0 10px 30px rgba(0,0,0,0.2);
}
.header h1 {
font-size: 3em;
margin-bottom: 10px;
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
}
.header p {
font-size: 1.2em;
opacity: 0.95;
}
.main-content {
background: rgba(255, 255, 255, 0.95);
border-radius: 20px;
padding: 30px;
box-shadow: 0 5px 20px rgba(0,0,0,0.1);
backdrop-filter: blur(10px);
}
.input-section {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
padding: 25px;
border-radius: 15px;
margin-bottom: 20px;
}
.generate-btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
font-size: 1.3em;
padding: 15px 40px;
border-radius: 30px;
border: none;
cursor: pointer;
transition: all 0.3s ease;
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4);
width: 100%;
margin-top: 20px;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 7px 20px rgba(102, 126, 234, 0.6);
}
.video-output {
background: #f8f9fa;
padding: 20px;
border-radius: 15px;
text-align: center;
min-height: 400px;
display: flex;
align-items: center;
justify-content: center;
}
.accordion {
background: rgba(255, 255, 255, 0.7);
border-radius: 10px;
margin-top: 15px;
padding: 15px;
}
.slider-container {
background: rgba(255, 255, 255, 0.5);
padding: 15px;
border-radius: 10px;
margin: 10px 0;
}
body {
background: linear-gradient(-45deg, #ee7752, #e73c7e, #23a6d5, #23d5ab);
background-size: 400% 400%;
animation: gradient 15s ease infinite;
}
@keyframes gradient {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
.gr-button-secondary {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
}
.footer {
text-align: center;
margin-top: 30px;
color: #666;
font-size: 0.9em;
}
"""
# Gradio UI
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_classes="container"):
# Header
gr.HTML("""
<div class="header">
<h1>🎬 AI Video Magic Studio</h1>
<p>Transform your images into captivating videos with Wan 2.1 + CausVid LoRA</p>
</div>
""")
with gr.Row(elem_classes="main-content"):
with gr.Column(scale=1):
gr.Markdown("### 📸 Input Settings")
with gr.Column(elem_classes="input-section"):
input_image = gr.Image(
type="pil",
label="🖼️ Upload Your Image",
elem_classes="image-upload"
)
prompt_input = gr.Textbox(
label="✨ Animation Prompt",
value=config.default_prompt,
placeholder="Describe how you want your image to move...",
lines=2
)
duration_input = gr.Slider(
minimum=round(config.min_frames/config.fixed_fps, 1),
maximum=round(config.max_frames/config.fixed_fps, 1),
step=0.1,
value=2,
label="⏱️ Video Duration (seconds)",
elem_classes="slider-container"
)
with gr.Accordion("🎛️ Advanced Settings", open=False, elem_classes="accordion"):
negative_prompt = gr.Textbox(
label="🚫 Negative Prompt",
value=config.default_negative_prompt,
lines=2
)
with gr.Row():
seed = gr.Slider(
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
label="🎲 Seed"
)
randomize_seed = gr.Checkbox(
label="🔀 Randomize",
value=True
)
with gr.Row():
height_slider = gr.Slider(
minimum=config.slider_min_h,
maximum=config.slider_max_h,
step=config.mod_value,
value=config.default_height,
label="📏 Height"
)
width_slider = gr.Slider(
minimum=config.slider_min_w,
maximum=config.slider_max_w,
step=config.mod_value,
value=config.default_width,
label="📐 Width"
)
steps_slider = gr.Slider(
minimum=1,
maximum=30,
step=1,
value=4,
label="🔧 Quality Steps (4-8 recommended)"
)
guidance_scale = gr.Slider(
minimum=0.0,
maximum=20.0,
step=0.5,
value=1.0,
label="🎯 Guidance Scale",
visible=False
)
generate_btn = gr.Button(
"🎬 Generate Video",
variant="primary",
elem_classes="generate-btn"
)
with gr.Column(scale=1):
gr.Markdown("### 🎥 Generated Video")
video_output = gr.Video(
label="",
autoplay=True,
elem_classes="video-output"
)
gr.HTML("""
<div class="footer">
<p>💡 Tip: For best results, use clear images with good lighting</p>
</div>
""")
# Examples
gr.Examples(
examples=[
["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512],
["forg.jpg", "the frog jumps around", 448, 832],
],
inputs=[input_image, prompt_input, height_slider, width_slider],
outputs=[video_output, seed],
fn=generate_video,
cache_examples="lazy"
)
# Examples 섹션 후에 추가
gr.HTML("""
<div class="improvements-container" style="background: rgba(255, 255, 255, 0.95); backdrop-filter: blur(10px); border-radius: 15px; padding: 20px; margin: 20px auto; max-width: 800px; box-shadow: 0 5px 20px rgba(0,0,0,0.1); font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;">
<div class="improvements-header" style="text-align: center; margin-bottom: 20px;">
<h3 style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 1.5em; margin: 0; font-weight: 700;">✨ Enhanced Features</h3>
<p style="color: #666; font-size: 0.9em; margin-top: 5px;">Optimized for performance, stability, and user experience</p>
</div>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 15px;">
<div style="background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); border-radius: 10px; padding: 15px;">
<span style="font-size: 1.5em; margin-bottom: 8px; display: block;">🛡️</span>
<div style="font-weight: 600; color: #333; font-size: 0.95em; margin-bottom: 5px;">Robust Error Handling</div>
<div style="font-size: 0.75em; color: #666; line-height: 1.4;">Advanced validation and recovery mechanisms</div>
</div>
<div style="background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); border-radius: 10px; padding: 15px;">
<span style="font-size: 1.5em; margin-bottom: 8px; display: block;">⚡</span>
<div style="font-weight: 600; color: #333; font-size: 0.95em; margin-bottom: 5px;">Performance Optimized</div>
<div style="font-size: 0.75em; color: #666; line-height: 1.4;">Faster processing with smart resource management</div>
</div>
<div style="background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); border-radius: 10px; padding: 15px;">
<span style="font-size: 1.5em; margin-bottom: 8px; display: block;">🎨</span>
<div style="font-weight: 600; color: #333; font-size: 0.95em; margin-bottom: 5px;">Modern UI/UX</div>
<div style="font-size: 0.75em; color: #666; line-height: 1.4;">Beautiful interface with smooth animations</div>
</div>
<div style="background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); border-radius: 10px; padding: 15px;">
<span style="font-size: 1.5em; margin-bottom: 8px; display: block;">🔧</span>
<div style="font-weight: 600; color: #333; font-size: 0.95em; margin-bottom: 5px;">Clean Architecture</div>
<div style="font-size: 0.75em; color: #666; line-height: 1.4;">Modular design for easy maintenance</div>
</div>
</div>
<div style="display: flex; flex-wrap: wrap; gap: 5px; margin-top: 15px; justify-content: center;">
<span style="background: rgba(102, 126, 234, 0.1); color: #667eea; padding: 3px 10px; border-radius: 20px; font-size: 0.7em; font-weight: 500;">PyTorch</span>
<span style="background: rgba(102, 126, 234, 0.1); color: #667eea; padding: 3px 10px; border-radius: 20px; font-size: 0.7em; font-weight: 500;">Diffusers</span>
<span style="background: rgba(102, 126, 234, 0.1); color: #667eea; padding: 3px 10px; border-radius: 20px; font-size: 0.7em; font-weight: 500;">Gradio</span>
<span style="background: rgba(102, 126, 234, 0.1); color: #667eea; padding: 3px 10px; border-radius: 20px; font-size: 0.7em; font-weight: 500;">CUDA Optimized</span>
<span style="background: rgba(102, 126, 234, 0.1); color: #667eea; padding: 3px 10px; border-radius: 20px; font-size: 0.7em; font-weight: 500;">LoRA Enhanced</span>
</div>
</div>
""")
# Event handlers
input_image.upload(
fn=handle_image_upload,
inputs=[input_image],
outputs=[height_slider, width_slider]
)
input_image.clear(
fn=handle_image_upload,
inputs=[input_image],
outputs=[height_slider, width_slider]
)
generate_btn.click(
fn=generate_video,
inputs=[
input_image, prompt_input, height_slider, width_slider,
negative_prompt, duration_input, guidance_scale,
steps_slider, seed, randomize_seed
],
outputs=[video_output, seed]
)
if __name__ == "__main__":
demo.queue().launch() |