File size: 20,769 Bytes
5f364b5
f4cf641
c103ac7
f4cf641
5f364b5
 
c103ac7
5f364b5
f4cf641
12d6cf5
8268b44
ec4cebf
 
 
 
 
 
 
5f364b5
ec4cebf
 
 
8268b44
ec4cebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8116465
ec4cebf
 
8116465
ec4cebf
 
 
 
 
 
 
 
 
f4cf641
ec4cebf
 
 
 
 
 
 
 
 
 
 
8575388
ec4cebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4cf641
ec4cebf
 
 
 
 
8268b44
ec4cebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8575388
ec4cebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4cf641
ec4cebf
 
 
 
 
f4cf641
ec4cebf
 
 
 
f4cf641
ec4cebf
f4cf641
ec4cebf
 
 
 
 
 
1b75f51
 
 
 
 
 
 
 
ec4cebf
8116465
ec4cebf
 
 
1e531a7
8268b44
ec4cebf
1e531a7
ec4cebf
 
 
 
 
 
8268b44
ec4cebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8575388
ec4cebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b98825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec4cebf
 
 
 
 
 
c103ac7
8268b44
ec4cebf
 
 
 
f4cf641
8268b44
ec4cebf
 
 
 
 
 
5f364b5
ec4cebf
5f364b5
 
 
8268b44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import logging
import gc
import time
import hashlib
from dataclasses import dataclass
from typing import Optional, Tuple
from functools import wraps

# 로깅 설정
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# 설정 관리
@dataclass
class VideoGenerationConfig:
    model_id: str = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
    lora_repo_id: str = "Kijai/WanVideo_comfy"
    lora_filename: str = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
    mod_value: int = 32
    default_height: int = 512
    default_width: int = 896
    max_area: float = 480.0 * 832.0
    slider_min_h: int = 128
    slider_max_h: int = 896
    slider_min_w: int = 128
    slider_max_w: int = 896
    fixed_fps: int = 24
    min_frames: int = 8
    max_frames: int = 81
    default_prompt: str = "make this image come alive, cinematic motion, smooth animation"
    default_negative_prompt: str = "static, blurred, low quality, watermark, text"

config = VideoGenerationConfig()
MAX_SEED = np.iinfo(np.int32).max

# 성능 측정 데코레이터
def measure_time(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        start = time.time()
        result = func(*args, **kwargs)
        logger.info(f"{func.__name__} took {time.time()-start:.2f}s")
        return result
    return wrapper

# 모델 관리자
class ModelManager:
    def __init__(self):
        self._pipe = None
        self._is_loaded = False
        
    @property
    def pipe(self):
        if not self._is_loaded:
            self._load_model()
        return self._pipe
    
    @measure_time
    def _load_model(self):
        logger.info("Loading model...")
        image_encoder = CLIPVisionModel.from_pretrained(
            config.model_id, subfolder="image_encoder", torch_dtype=torch.float32
        )
        vae = AutoencoderKLWan.from_pretrained(
            config.model_id, subfolder="vae", torch_dtype=torch.float32
        )
        self._pipe = WanImageToVideoPipeline.from_pretrained(
            config.model_id, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
        )
        self._pipe.scheduler = UniPCMultistepScheduler.from_config(
            self._pipe.scheduler.config, flow_shift=8.0
        )
        self._pipe.to("cuda")
        
        causvid_path = hf_hub_download(
            repo_id=config.lora_repo_id, filename=config.lora_filename
        )
        self._pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
        self._pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
        self._pipe.fuse_lora()
        self._is_loaded = True
        logger.info("Model loaded successfully")

model_manager = ModelManager()

# 비디오 생성기 클래스
class VideoGenerator:
    def __init__(self, config: VideoGenerationConfig, model_manager: ModelManager):
        self.config = config
        self.model_manager = model_manager
    
    def calculate_dimensions(self, image: Image.Image) -> Tuple[int, int]:
        orig_w, orig_h = image.size
        if orig_w <= 0 or orig_h <= 0:
            return self.config.default_height, self.config.default_width
        
        aspect_ratio = orig_h / orig_w
        calc_h = round(np.sqrt(self.config.max_area * aspect_ratio))
        calc_w = round(np.sqrt(self.config.max_area / aspect_ratio))
        
        calc_h = max(self.config.mod_value, (calc_h // self.config.mod_value) * self.config.mod_value)
        calc_w = max(self.config.mod_value, (calc_w // self.config.mod_value) * self.config.mod_value)
        
        new_h = int(np.clip(calc_h, self.config.slider_min_h, 
                           (self.config.slider_max_h // self.config.mod_value) * self.config.mod_value))
        new_w = int(np.clip(calc_w, self.config.slider_min_w, 
                           (self.config.slider_max_w // self.config.mod_value) * self.config.mod_value))
        
        return new_h, new_w
    
    def validate_inputs(self, image: Image.Image, prompt: str, height: int, 
                       width: int, duration: float, steps: int) -> Tuple[bool, Optional[str]]:
        if image is None:
            return False, "🖼️ Please upload an input image"
        
        if not prompt or len(prompt.strip()) == 0:
            return False, "✍️ Please provide a prompt"
        
        if len(prompt) > 500:
            return False, "⚠️ Prompt is too long (max 500 characters)"
        
        if duration < self.config.min_frames / self.config.fixed_fps:
            return False, f"⏱️ Duration too short (min {self.config.min_frames/self.config.fixed_fps:.1f}s)"
        
        if duration > self.config.max_frames / self.config.fixed_fps:
            return False, f"⏱️ Duration too long (max {self.config.max_frames/self.config.fixed_fps:.1f}s)"
        
        return True, None
    
    def generate_unique_filename(self, seed: int) -> str:
        timestamp = int(time.time())
        unique_str = f"{timestamp}_{seed}_{random.randint(1000, 9999)}"
        hash_obj = hashlib.md5(unique_str.encode())
        return f"video_{hash_obj.hexdigest()[:8]}.mp4"

video_generator = VideoGenerator(config, model_manager)

# Gradio 함수들
def handle_image_upload(image):
    if image is None:
        return gr.update(value=config.default_height), gr.update(value=config.default_width)
    
    try:
        if not isinstance(image, Image.Image):
            raise ValueError("Invalid image format")
        
        new_h, new_w = video_generator.calculate_dimensions(image)
        return gr.update(value=new_h), gr.update(value=new_w)
        
    except Exception as e:
        logger.error(f"Error processing image: {e}")
        gr.Warning("⚠️ Error processing image")
        return gr.update(value=config.default_height), gr.update(value=config.default_width)

def get_duration(input_image, prompt, height, width, negative_prompt, 
                duration_seconds, guidance_scale, steps, seed, randomize_seed, progress):
    if steps > 4 and duration_seconds > 2:
        return 90
    elif steps > 4 or duration_seconds > 2:
        return 75
    else:
        return 60

@spaces.GPU(duration=get_duration)
@measure_time
def generate_video(input_image, prompt, height, width, 
                   negative_prompt=config.default_negative_prompt, 
                   duration_seconds=2, guidance_scale=1, steps=4,
                   seed=42, randomize_seed=False, 
                   progress=gr.Progress(track_tqdm=True)):
    
    progress(0.1, desc="🔍 Validating inputs...")
    
    # 입력 검증
    is_valid, error_msg = video_generator.validate_inputs(
        input_image, prompt, height, width, duration_seconds, steps
    )
    if not is_valid:
        raise gr.Error(error_msg)
    
    try:
        progress(0.2, desc="🎯 Preparing image...")
        target_h = max(config.mod_value, (int(height) // config.mod_value) * config.mod_value)
        target_w = max(config.mod_value, (int(width) // config.mod_value) * config.mod_value)
        num_frames = np.clip(int(round(duration_seconds * config.fixed_fps)), 
                            config.min_frames, config.max_frames)
        current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
        
        resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
        
        progress(0.3, desc="🎨 Loading model...")
        pipe = model_manager.pipe
        
        progress(0.4, desc="🎬 Generating video frames...")
        with torch.inference_mode():
            output_frames_list = pipe(
                image=resized_image,
                prompt=prompt,
                negative_prompt=negative_prompt,
                height=target_h,
                width=target_w,
                num_frames=num_frames,
                guidance_scale=float(guidance_scale),
                num_inference_steps=int(steps),
                generator=torch.Generator(device="cuda").manual_seed(current_seed)
            ).frames[0]
        
        progress(0.9, desc="💾 Saving video...")
        filename = video_generator.generate_unique_filename(current_seed)
        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
            video_path = tmpfile.name
        
        export_to_video(output_frames_list, video_path, fps=config.fixed_fps)
        
        progress(1.0, desc="✨ Complete!")
        return video_path, current_seed
        
    finally:
        # 메모리 정리
        if 'output_frames_list' in locals():
            del output_frames_list
        gc.collect()
        torch.cuda.empty_cache()

# CSS 스타일
css = """
.container {
    max-width: 1200px;
    margin: auto;
    padding: 20px;
}

.header {
    text-align: center;
    margin-bottom: 30px;
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    padding: 40px;
    border-radius: 20px;
    color: white;
    box-shadow: 0 10px 30px rgba(0,0,0,0.2);
}

.header h1 {
    font-size: 3em;
    margin-bottom: 10px;
    text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
}

.header p {
    font-size: 1.2em;
    opacity: 0.95;
}

.main-content {
    background: rgba(255, 255, 255, 0.95);
    border-radius: 20px;
    padding: 30px;
    box-shadow: 0 5px 20px rgba(0,0,0,0.1);
    backdrop-filter: blur(10px);
}

.input-section {
    background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
    padding: 25px;
    border-radius: 15px;
    margin-bottom: 20px;
}

.generate-btn {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    color: white;
    font-size: 1.3em;
    padding: 15px 40px;
    border-radius: 30px;
    border: none;
    cursor: pointer;
    transition: all 0.3s ease;
    box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4);
    width: 100%;
    margin-top: 20px;
}

.generate-btn:hover {
    transform: translateY(-2px);
    box-shadow: 0 7px 20px rgba(102, 126, 234, 0.6);
}

.video-output {
    background: #f8f9fa;
    padding: 20px;
    border-radius: 15px;
    text-align: center;
    min-height: 400px;
    display: flex;
    align-items: center;
    justify-content: center;
}

.accordion {
    background: rgba(255, 255, 255, 0.7);
    border-radius: 10px;
    margin-top: 15px;
    padding: 15px;
}

.slider-container {
    background: rgba(255, 255, 255, 0.5);
    padding: 15px;
    border-radius: 10px;
    margin: 10px 0;
}

body {
    background: linear-gradient(-45deg, #ee7752, #e73c7e, #23a6d5, #23d5ab);
    background-size: 400% 400%;
    animation: gradient 15s ease infinite;
}

@keyframes gradient {
    0% { background-position: 0% 50%; }
    50% { background-position: 100% 50%; }
    100% { background-position: 0% 50%; }
}

.gr-button-secondary {
    background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
}

.footer {
    text-align: center;
    margin-top: 30px;
    color: #666;
    font-size: 0.9em;
}
"""

# Gradio UI
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_classes="container"):
        # Header
        gr.HTML("""
        <div class="header">
            <h1>🎬 AI Video Magic Studio</h1>
            <p>Transform your images into captivating videos with Wan 2.1 + CausVid LoRA</p>
        </div>
        """)
        
        with gr.Row(elem_classes="main-content"):
            with gr.Column(scale=1):
                gr.Markdown("### 📸 Input Settings")
                
                with gr.Column(elem_classes="input-section"):
                    input_image = gr.Image(
                        type="pil", 
                        label="🖼️ Upload Your Image",
                        elem_classes="image-upload"
                    )
                    
                    prompt_input = gr.Textbox(
                        label="✨ Animation Prompt",
                        value=config.default_prompt,
                        placeholder="Describe how you want your image to move...",
                        lines=2
                    )
                    
                    duration_input = gr.Slider(
                        minimum=round(config.min_frames/config.fixed_fps, 1),
                        maximum=round(config.max_frames/config.fixed_fps, 1),
                        step=0.1,
                        value=2,
                        label="⏱️ Video Duration (seconds)",
                        elem_classes="slider-container"
                    )
                
                with gr.Accordion("🎛️ Advanced Settings", open=False, elem_classes="accordion"):
                    negative_prompt = gr.Textbox(
                        label="🚫 Negative Prompt",
                        value=config.default_negative_prompt,
                        lines=2
                    )
                    
                    with gr.Row():
                        seed = gr.Slider(
                            minimum=0,
                            maximum=MAX_SEED,
                            step=1,
                            value=42,
                            label="🎲 Seed"
                        )
                        randomize_seed = gr.Checkbox(
                            label="🔀 Randomize",
                            value=True
                        )
                    
                    with gr.Row():
                        height_slider = gr.Slider(
                            minimum=config.slider_min_h,
                            maximum=config.slider_max_h,
                            step=config.mod_value,
                            value=config.default_height,
                            label="📏 Height"
                        )
                        width_slider = gr.Slider(
                            minimum=config.slider_min_w,
                            maximum=config.slider_max_w,
                            step=config.mod_value,
                            value=config.default_width,
                            label="📐 Width"
                        )
                    
                    steps_slider = gr.Slider(
                        minimum=1,
                        maximum=30,
                        step=1,
                        value=4,
                        label="🔧 Quality Steps (4-8 recommended)"
                    )
                    
                    guidance_scale = gr.Slider(
                        minimum=0.0,
                        maximum=20.0,
                        step=0.5,
                        value=1.0,
                        label="🎯 Guidance Scale",
                        visible=False
                    )
                
                generate_btn = gr.Button(
                    "🎬 Generate Video",
                    variant="primary",
                    elem_classes="generate-btn"
                )
            
            with gr.Column(scale=1):
                gr.Markdown("### 🎥 Generated Video")
                video_output = gr.Video(
                    label="",
                    autoplay=True,
                    elem_classes="video-output"
                )
                
                gr.HTML("""
                <div class="footer">
                    <p>💡 Tip: For best results, use clear images with good lighting</p>
                </div>
                """)
        
        # Examples
        gr.Examples(
            examples=[
                ["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512],
                ["forg.jpg", "the frog jumps around", 448, 832],
            ],
            inputs=[input_image, prompt_input, height_slider, width_slider],
            outputs=[video_output, seed],
            fn=generate_video,
            cache_examples="lazy"
        )

    # Examples 섹션 후에 추가
    gr.HTML("""
    <div class="improvements-container" style="background: rgba(255, 255, 255, 0.95); backdrop-filter: blur(10px); border-radius: 15px; padding: 20px; margin: 20px auto; max-width: 800px; box-shadow: 0 5px 20px rgba(0,0,0,0.1); font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;">
        <div class="improvements-header" style="text-align: center; margin-bottom: 20px;">
            <h3 style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 1.5em; margin: 0; font-weight: 700;">✨ Enhanced Features</h3>
            <p style="color: #666; font-size: 0.9em; margin-top: 5px;">Optimized for performance, stability, and user experience</p>
        </div>
        
        <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 15px;">
            <div style="background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); border-radius: 10px; padding: 15px;">
                <span style="font-size: 1.5em; margin-bottom: 8px; display: block;">🛡️</span>
                <div style="font-weight: 600; color: #333; font-size: 0.95em; margin-bottom: 5px;">Robust Error Handling</div>
                <div style="font-size: 0.75em; color: #666; line-height: 1.4;">Advanced validation and recovery mechanisms</div>
            </div>
            
            <div style="background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); border-radius: 10px; padding: 15px;">
                <span style="font-size: 1.5em; margin-bottom: 8px; display: block;">⚡</span>
                <div style="font-weight: 600; color: #333; font-size: 0.95em; margin-bottom: 5px;">Performance Optimized</div>
                <div style="font-size: 0.75em; color: #666; line-height: 1.4;">Faster processing with smart resource management</div>
            </div>
            
            <div style="background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); border-radius: 10px; padding: 15px;">
                <span style="font-size: 1.5em; margin-bottom: 8px; display: block;">🎨</span>
                <div style="font-weight: 600; color: #333; font-size: 0.95em; margin-bottom: 5px;">Modern UI/UX</div>
                <div style="font-size: 0.75em; color: #666; line-height: 1.4;">Beautiful interface with smooth animations</div>
            </div>
            
            <div style="background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); border-radius: 10px; padding: 15px;">
                <span style="font-size: 1.5em; margin-bottom: 8px; display: block;">🔧</span>
                <div style="font-weight: 600; color: #333; font-size: 0.95em; margin-bottom: 5px;">Clean Architecture</div>
                <div style="font-size: 0.75em; color: #666; line-height: 1.4;">Modular design for easy maintenance</div>
            </div>
        </div>
        
        <div style="display: flex; flex-wrap: wrap; gap: 5px; margin-top: 15px; justify-content: center;">
            <span style="background: rgba(102, 126, 234, 0.1); color: #667eea; padding: 3px 10px; border-radius: 20px; font-size: 0.7em; font-weight: 500;">PyTorch</span>
            <span style="background: rgba(102, 126, 234, 0.1); color: #667eea; padding: 3px 10px; border-radius: 20px; font-size: 0.7em; font-weight: 500;">Diffusers</span>
            <span style="background: rgba(102, 126, 234, 0.1); color: #667eea; padding: 3px 10px; border-radius: 20px; font-size: 0.7em; font-weight: 500;">Gradio</span>
            <span style="background: rgba(102, 126, 234, 0.1); color: #667eea; padding: 3px 10px; border-radius: 20px; font-size: 0.7em; font-weight: 500;">CUDA Optimized</span>
            <span style="background: rgba(102, 126, 234, 0.1); color: #667eea; padding: 3px 10px; border-radius: 20px; font-size: 0.7em; font-weight: 500;">LoRA Enhanced</span>
        </div>
    </div>
    """)
    
    # Event handlers
    input_image.upload(
        fn=handle_image_upload,
        inputs=[input_image],
        outputs=[height_slider, width_slider]
    )
    
    input_image.clear(
        fn=handle_image_upload,
        inputs=[input_image],
        outputs=[height_slider, width_slider]
    )
    
    generate_btn.click(
        fn=generate_video,
        inputs=[
            input_image, prompt_input, height_slider, width_slider,
            negative_prompt, duration_input, guidance_scale, 
            steps_slider, seed, randomize_seed
        ],
        outputs=[video_output, seed]
    )

if __name__ == "__main__":
    demo.queue().launch()