Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,668 Bytes
5f364b5 f4cf641 c103ac7 f4cf641 5f364b5 c103ac7 5f364b5 f4cf641 12d6cf5 8268b44 ec4cebf 5b5b696 5f364b5 ec4cebf 8268b44 ec4cebf 8c18bc3 ec4cebf 8c18bc3 ec4cebf 8c18bc3 ec4cebf 5b5b696 4e94f64 8116465 ec4cebf 8116465 5b5b696 ec4cebf f4cf641 5b5b696 ec4cebf 5b5b696 ec4cebf 5b5b696 ec4cebf 8575388 ec4cebf 5b5b696 8c18bc3 5b5b696 ec4cebf 5b5b696 ec4cebf f4cf641 ec4cebf 8268b44 ec4cebf 8c18bc3 ec4cebf 8c18bc3 ec4cebf 8575388 ec4cebf 4e94f64 ec4cebf 4e94f64 8c18bc3 ec4cebf 5b5b696 4e94f64 5b5b696 ec4cebf f4cf641 ec4cebf f4cf641 ec4cebf f4cf641 ec4cebf f4cf641 ec4cebf 4e94f64 5b5b696 4e94f64 5b5b696 4e94f64 5b5b696 4e94f64 5b5b696 8c18bc3 5b5b696 8c18bc3 5b5b696 8c18bc3 4e94f64 5b5b696 4e94f64 1b75f51 ec4cebf 8116465 ec4cebf 4e94f64 ec4cebf 1e531a7 8268b44 5b5b696 8268b44 ec4cebf 5b5b696 4e94f64 8c18bc3 4e94f64 5b5b696 ec4cebf 4e94f64 ec4cebf 5b5b696 ec4cebf 5b5b696 ec4cebf 4e94f64 ec4cebf 5b5b696 ec4cebf 5b5b696 ec4cebf 5b5b696 ec4cebf 5b5b696 ec4cebf 5b5b696 ec4cebf 5b5b696 ec4cebf 5b5b696 ec4cebf 5b5b696 ec4cebf 5b5b696 ec4cebf 5b5b696 ec4cebf 8c18bc3 5b5b696 4e94f64 5b5b696 4e94f64 8c18bc3 4e94f64 5b5b696 ec4cebf 4e94f64 ec4cebf 4e94f64 ec4cebf 8c18bc3 ec4cebf 8c18bc3 ec4cebf 8575388 ec4cebf 5b5b696 8c18bc3 ec4cebf 5b5b696 ec4cebf 8b98825 5b5b696 8b98825 5b5b696 ec4cebf c103ac7 8268b44 ec4cebf f4cf641 8268b44 ec4cebf 5f364b5 ec4cebf 5f364b5 8c18bc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 |
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import logging
import gc
import time
import hashlib
from dataclasses import dataclass
from typing import Optional, Tuple
from functools import wraps
import threading
import os
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์ค์
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
# ๋ก๊น
์ค์
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ์ค์ ๊ด๋ฆฌ
@dataclass
class VideoGenerationConfig:
model_id: str = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
lora_repo_id: str = "Kijai/WanVideo_comfy"
lora_filename: str = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
mod_value: int = 32
default_height: int = 512
default_width: int = 512 # Zero GPU ํ๊ฒฝ์ ์ํด ๊ธฐ๋ณธ๊ฐ ์์
max_area: float = 480.0 * 832.0
slider_min_h: int = 128
slider_max_h: int = 832 # Zero GPU ํ๊ฒฝ์ ์ํด ์์
slider_min_w: int = 128
slider_max_w: int = 832 # Zero GPU ํ๊ฒฝ์ ์ํด ์์
fixed_fps: int = 24
min_frames: int = 8
max_frames: int = 81
default_prompt: str = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt: str = "static, blurred, low quality, watermark, text"
# GPU ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ ์ค์
enable_model_cpu_offload: bool = True
enable_vae_slicing: bool = True
enable_vae_tiling: bool = True
@property
def max_duration(self):
"""์ต๋ ํ์ฉ duration (์ด)"""
return self.max_frames / self.fixed_fps
@property
def min_duration(self):
"""์ต์ ํ์ฉ duration (์ด)"""
return self.min_frames / self.fixed_fps
config = VideoGenerationConfig()
MAX_SEED = np.iinfo(np.int32).max
# ๊ธ๋ก๋ฒ ๋ฝ (๋์ ์คํ ๋ฐฉ์ง)
generation_lock = threading.Lock()
# ์ฑ๋ฅ ์ธก์ ๋ฐ์ฝ๋ ์ดํฐ
def measure_time(func):
@wraps(func)
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
logger.info(f"{func.__name__} took {time.time()-start:.2f}s")
return result
return wrapper
# GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์
def clear_gpu_memory():
"""๊ฐ๋ ฅํ GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
gc.collect()
# GPU ๋ฉ๋ชจ๋ฆฌ ์ํ ๋ก๊น
allocated = torch.cuda.memory_allocated() / 1024**3
reserved = torch.cuda.memory_reserved() / 1024**3
logger.info(f"GPU Memory - Allocated: {allocated:.2f}GB, Reserved: {reserved:.2f}GB")
# ๋ชจ๋ธ ๊ด๋ฆฌ์ (์ฑ๊ธํค ํจํด)
class ModelManager:
_instance = None
_lock = threading.Lock()
def __new__(cls):
if cls._instance is None:
with cls._lock:
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self):
if not hasattr(self, '_initialized'):
self._pipe = None
self._is_loaded = False
self._initialized = True
@property
def pipe(self):
if not self._is_loaded:
self._load_model()
return self._pipe
@measure_time
def _load_model(self):
"""๋ฉ๋ชจ๋ฆฌ ํจ์จ์ ์ธ ๋ชจ๋ธ ๋ก๋ฉ"""
with self._lock:
if self._is_loaded:
return
try:
logger.info("Loading model with memory optimizations...")
clear_gpu_memory()
# ๋ชจ๋ธ ์ปดํฌ๋ํธ ๋ก๋ (๋ฉ๋ชจ๋ฆฌ ํจ์จ์ )
with torch.cuda.amp.autocast(enabled=False):
image_encoder = CLIPVisionModel.from_pretrained(
config.model_id,
subfolder="image_encoder",
torch_dtype=torch.float16, # float32 ๋์ float16 ์ฌ์ฉ
low_cpu_mem_usage=True
)
vae = AutoencoderKLWan.from_pretrained(
config.model_id,
subfolder="vae",
torch_dtype=torch.float16, # float32 ๋์ float16 ์ฌ์ฉ
low_cpu_mem_usage=True
)
self._pipe = WanImageToVideoPipeline.from_pretrained(
config.model_id,
vae=vae,
image_encoder=image_encoder,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_safetensors=True
)
# ์ค์ผ์ค๋ฌ ์ค์
self._pipe.scheduler = UniPCMultistepScheduler.from_config(
self._pipe.scheduler.config, flow_shift=8.0
)
# LoRA ๋ก๋
causvid_path = hf_hub_download(
repo_id=config.lora_repo_id, filename=config.lora_filename
)
self._pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
self._pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
self._pipe.fuse_lora()
# GPU ์ต์ ํ ์ค์
if hasattr(spaces, 'GPU'): # Zero GPU ํ๊ฒฝ
self._pipe.enable_model_cpu_offload()
logger.info("CPU offload enabled for Zero GPU")
elif config.enable_model_cpu_offload:
self._pipe.enable_model_cpu_offload()
else:
self._pipe.to("cuda")
if config.enable_vae_slicing:
self._pipe.enable_vae_slicing()
if config.enable_vae_tiling:
self._pipe.enable_vae_tiling()
# xFormers ๋ฉ๋ชจ๋ฆฌ ํจ์จ์ ์ธ attention ํ์ฑํ (๊ฐ๋ฅํ ๊ฒฝ์ฐ)
try:
self._pipe.enable_xformers_memory_efficient_attention()
logger.info("xFormers memory efficient attention enabled")
except:
logger.info("xFormers not available, using default attention")
self._is_loaded = True
logger.info("Model loaded successfully with optimizations")
clear_gpu_memory()
except Exception as e:
logger.error(f"Error loading model: {e}")
self._is_loaded = False
clear_gpu_memory()
raise
def unload_model(self):
"""๋ชจ๋ธ ์ธ๋ก๋ ๋ฐ ๋ฉ๋ชจ๋ฆฌ ํด์ """
with self._lock:
if self._pipe is not None:
del self._pipe
self._pipe = None
self._is_loaded = False
clear_gpu_memory()
logger.info("Model unloaded and memory cleared")
# ์ฑ๊ธํค ์ธ์คํด์ค
model_manager = ModelManager()
# ๋น๋์ค ์์ฑ๊ธฐ ํด๋์ค
class VideoGenerator:
def __init__(self, config: VideoGenerationConfig, model_manager: ModelManager):
self.config = config
self.model_manager = model_manager
def calculate_dimensions(self, image: Image.Image) -> Tuple[int, int]:
orig_w, orig_h = image.size
if orig_w <= 0 or orig_h <= 0:
return self.config.default_height, self.config.default_width
aspect_ratio = orig_h / orig_w
# Zero GPU ํ๊ฒฝ์์๋ ๋ ์์ max_area ์ฌ์ฉ
if hasattr(spaces, 'GPU'):
max_area = 640.0 * 640.0 # 409,600 pixels
else:
max_area = self.config.max_area
calc_h = round(np.sqrt(max_area * aspect_ratio))
calc_w = round(np.sqrt(max_area / aspect_ratio))
calc_h = max(self.config.mod_value, (calc_h // self.config.mod_value) * self.config.mod_value)
calc_w = max(self.config.mod_value, (calc_w // self.config.mod_value) * self.config.mod_value)
# Zero GPU ํ๊ฒฝ์์ ์ถ๊ฐ ์ ํ
if hasattr(spaces, 'GPU'):
max_dim = 832
new_h = int(np.clip(calc_h, self.config.slider_min_h, min(max_dim, self.config.slider_max_h)))
new_w = int(np.clip(calc_w, self.config.slider_min_w, min(max_dim, self.config.slider_max_w)))
else:
new_h = int(np.clip(calc_h, self.config.slider_min_h,
(self.config.slider_max_h // self.config.mod_value) * self.config.mod_value))
new_w = int(np.clip(calc_w, self.config.slider_min_w,
(self.config.slider_max_w // self.config.mod_value) * self.config.mod_value))
return new_h, new_w
def validate_inputs(self, image: Image.Image, prompt: str, height: int,
width: int, duration: float, steps: int) -> Tuple[bool, Optional[str]]:
if image is None:
return False, "๐ผ๏ธ Please upload an input image"
if not prompt or len(prompt.strip()) == 0:
return False, "โ๏ธ Please provide a prompt"
if len(prompt) > 500:
return False, "โ ๏ธ Prompt is too long (max 500 characters)"
# ์ ํํ duration ๋ฒ์ ์ฒดํฌ
min_duration = self.config.min_duration
max_duration = self.config.max_duration
if duration < min_duration:
return False, f"โฑ๏ธ Duration too short (min {min_duration:.1f}s)"
if duration > max_duration:
return False, f"โฑ๏ธ Duration too long (max {max_duration:.1f}s)"
# Zero GPU ํ๊ฒฝ์์๋ ๋ ๋ณด์์ ์ธ ์ ํ ์ ์ฉ
if hasattr(spaces, 'GPU'): # Spaces ํ๊ฒฝ ์ฒดํฌ
if duration > 2.5: # Zero GPU์์๋ 2.5์ด๋ก ์ ํ
return False, "โฑ๏ธ In Zero GPU environment, duration is limited to 2.5s for stability"
# ํฝ์
์ ๊ธฐ๋ฐ ์ ํ (640x640 = 409,600 ํฝ์
)
max_pixels = 640 * 640
if height * width > max_pixels:
return False, f"๐ In Zero GPU environment, total pixels limited to {max_pixels:,} (e.g., 640ร640, 512ร832)"
if height > 832 or width > 832: # ํ ๋ณ์ ์ต๋ ๊ธธ์ด
return False, "๐ In Zero GPU environment, maximum dimension is 832 pixels"
# GPU ๋ฉ๋ชจ๋ฆฌ ์ฒดํฌ
if torch.cuda.is_available():
try:
free_memory = torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_allocated()
required_memory = (height * width * 3 * 8 * duration * self.config.fixed_fps) / (1024**3)
if free_memory < required_memory * 2:
clear_gpu_memory()
return False, "โ ๏ธ Not enough GPU memory. Try smaller dimensions or shorter duration."
except:
pass # GPU ์ฒดํฌ ์คํจ์ ๊ณ์ ์งํ
return True, None
def generate_unique_filename(self, seed: int) -> str:
timestamp = int(time.time())
unique_str = f"{timestamp}_{seed}_{random.randint(1000, 9999)}"
hash_obj = hashlib.md5(unique_str.encode())
return f"video_{hash_obj.hexdigest()[:8]}.mp4"
video_generator = VideoGenerator(config, model_manager)
# Gradio ํจ์๋ค
def handle_image_upload(image):
if image is None:
return gr.update(value=config.default_height), gr.update(value=config.default_width)
try:
if not isinstance(image, Image.Image):
raise ValueError("Invalid image format")
new_h, new_w = video_generator.calculate_dimensions(image)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
logger.error(f"Error processing image: {e}")
gr.Warning("โ ๏ธ Error processing image")
return gr.update(value=config.default_height), gr.update(value=config.default_width)
def get_duration(input_image, prompt, height, width, negative_prompt,
duration_seconds, guidance_scale, steps, seed, randomize_seed, progress):
# Zero GPU ํ๊ฒฝ์์๋ ๋ ๋ณด์์ ์ธ ์๊ฐ ํ ๋น
base_duration = 60
# ๋จ๊ณ๋ณ ์ถ๊ฐ ์๊ฐ
if steps > 8:
base_duration += 30
elif steps > 4:
base_duration += 15
# Duration๋ณ ์ถ๊ฐ ์๊ฐ
if duration_seconds > 2:
base_duration += 20
elif duration_seconds > 1.5:
base_duration += 10
# ํด์๋๋ณ ์ถ๊ฐ ์๊ฐ (ํฝ์
์ ๊ธฐ๋ฐ)
pixels = height * width
if pixels > 400000: # 640x640 ๊ทผ์ฒ
base_duration += 20
elif pixels > 250000: # 512x512 ๊ทผ์ฒ
base_duration += 10
# Zero GPU ํ๊ฒฝ์์๋ ์ต๋ 90์ด๋ก ์ ํ
return min(base_duration, 90)
@spaces.GPU(duration=get_duration)
@measure_time
def generate_video(input_image, prompt, height, width,
negative_prompt=config.default_negative_prompt,
duration_seconds=1.5, guidance_scale=1, steps=4,
seed=42, randomize_seed=False,
progress=gr.Progress(track_tqdm=True)):
# ๋์ ์คํ ๋ฐฉ์ง
if not generation_lock.acquire(blocking=False):
raise gr.Error("โณ Another video is being generated. Please wait...")
try:
progress(0.1, desc="๐ Validating inputs...")
# Zero GPU ํ๊ฒฝ์์ ์ถ๊ฐ ๊ฒ์ฆ
if hasattr(spaces, 'GPU'):
logger.info(f"Zero GPU environment detected. Duration: {duration_seconds}s, Resolution: {height}x{width}, Pixels: {height*width:,}")
# ์
๋ ฅ ๊ฒ์ฆ
is_valid, error_msg = video_generator.validate_inputs(
input_image, prompt, height, width, duration_seconds, steps
)
if not is_valid:
raise gr.Error(error_msg)
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
clear_gpu_memory()
progress(0.2, desc="๐ฏ Preparing image...")
target_h = max(config.mod_value, (int(height) // config.mod_value) * config.mod_value)
target_w = max(config.mod_value, (int(width) // config.mod_value) * config.mod_value)
# ํ๋ ์ ์ ๊ณ์ฐ (Zero GPU ํ๊ฒฝ์์ ์ถ๊ฐ ์ ํ)
max_allowed_frames = int(2.5 * config.fixed_fps) if hasattr(spaces, 'GPU') else config.max_frames
num_frames = min(
int(round(duration_seconds * config.fixed_fps)),
max_allowed_frames
)
num_frames = np.clip(num_frames, config.min_frames, max_allowed_frames)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
# ์ด๋ฏธ์ง ๋ฆฌ์ฌ์ด์ฆ (๋ฉ๋ชจ๋ฆฌ ํจ์จ์ )
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
progress(0.3, desc="๐จ Loading model...")
pipe = model_manager.pipe
progress(0.4, desc="๐ฌ Generating video frames...")
# ๋ฉ๋ชจ๋ฆฌ ํจ์จ์ ์ธ ์์ฑ
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=True):
try:
output_frames_list = pipe(
image=resized_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=target_h,
width=target_w,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
return_dict=True
).frames[0]
except torch.cuda.OutOfMemoryError:
clear_gpu_memory()
raise gr.Error("๐พ GPU out of memory. Try smaller dimensions or shorter duration.")
except Exception as e:
logger.error(f"Generation error: {e}")
raise gr.Error(f"โ Generation failed: {str(e)}")
progress(0.9, desc="๐พ Saving video...")
filename = video_generator.generate_unique_filename(current_seed)
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=config.fixed_fps)
progress(1.0, desc="โจ Complete!")
logger.info(f"Video generated successfully: {num_frames} frames, {target_h}x{target_w}")
return video_path, current_seed
except Exception as e:
logger.error(f"Unexpected error: {e}")
raise
finally:
# ํญ์ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ๋ฐ ๋ฝ ํด์
generation_lock.release()
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
if 'output_frames_list' in locals():
del output_frames_list
if 'resized_image' in locals():
del resized_image
clear_gpu_memory()
# ๊ฐ์ ๋ CSS ์คํ์ผ
css = """
.container {
max-width: 1200px;
margin: auto;
padding: 20px;
}
.header {
text-align: center;
margin-bottom: 30px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 40px;
border-radius: 20px;
color: white;
box-shadow: 0 10px 30px rgba(0,0,0,0.2);
position: relative;
overflow: hidden;
}
.header::before {
content: '';
position: absolute;
top: -50%;
left: -50%;
width: 200%;
height: 200%;
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, transparent 70%);
animation: pulse 4s ease-in-out infinite;
}
@keyframes pulse {
0%, 100% { transform: scale(1); opacity: 0.5; }
50% { transform: scale(1.1); opacity: 0.8; }
}
.header h1 {
font-size: 3em;
margin-bottom: 10px;
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
position: relative;
z-index: 1;
}
.header p {
font-size: 1.2em;
opacity: 0.95;
position: relative;
z-index: 1;
}
.gpu-status {
position: absolute;
top: 10px;
right: 10px;
background: rgba(0,0,0,0.3);
padding: 5px 15px;
border-radius: 20px;
font-size: 0.8em;
}
.main-content {
background: rgba(255, 255, 255, 0.95);
border-radius: 20px;
padding: 30px;
box-shadow: 0 5px 20px rgba(0,0,0,0.1);
backdrop-filter: blur(10px);
}
.input-section {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
padding: 25px;
border-radius: 15px;
margin-bottom: 20px;
}
.generate-btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
font-size: 1.3em;
padding: 15px 40px;
border-radius: 30px;
border: none;
cursor: pointer;
transition: all 0.3s ease;
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4);
width: 100%;
margin-top: 20px;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 7px 20px rgba(102, 126, 234, 0.6);
}
.generate-btn:active {
transform: translateY(0);
}
.video-output {
background: #f8f9fa;
padding: 20px;
border-radius: 15px;
text-align: center;
min-height: 400px;
display: flex;
align-items: center;
justify-content: center;
}
.accordion {
background: rgba(255, 255, 255, 0.7);
border-radius: 10px;
margin-top: 15px;
padding: 15px;
}
.slider-container {
background: rgba(255, 255, 255, 0.5);
padding: 15px;
border-radius: 10px;
margin: 10px 0;
}
body {
background: linear-gradient(-45deg, #ee7752, #e73c7e, #23a6d5, #23d5ab);
background-size: 400% 400%;
animation: gradient 15s ease infinite;
}
@keyframes gradient {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
.warning-box {
background: rgba(255, 193, 7, 0.1);
border: 1px solid rgba(255, 193, 7, 0.3);
border-radius: 10px;
padding: 15px;
margin: 10px 0;
color: #856404;
font-size: 0.9em;
}
.footer {
text-align: center;
margin-top: 30px;
color: #666;
font-size: 0.9em;
}
"""
# Gradio UI
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_classes="container"):
# Header with GPU status
gr.HTML("""
<div class="header">
<h1>๐ฌ AI Video Magic Studio</h1>
<p>Transform your images into captivating videos with Wan 2.1 + CausVid LoRA</p>
<div class="gpu-status">๐ฅ๏ธ Zero GPU Optimized</div>
</div>
""")
# GPU ๋ฉ๋ชจ๋ฆฌ ๊ฒฝ๊ณ
gr.HTML("""
<div class="warning-box">
<strong>๐ก Zero GPU Performance Tips:</strong>
<ul style="margin: 5px 0; padding-left: 20px;">
<li>Maximum duration: 2.5 seconds (limited by Zero GPU)</li>
<li>Maximum total pixels: 409,600 (e.g., 640ร640, 512ร832, 448ร896)</li>
<li>Maximum single dimension: 832 pixels</li>
<li>Use 4-6 steps for optimal speed/quality balance</li>
<li>Wait between generations to avoid queue errors</li>
</ul>
</div>
""")
with gr.Row(elem_classes="main-content"):
with gr.Column(scale=1):
gr.Markdown("### ๐ธ Input Settings")
with gr.Column(elem_classes="input-section"):
input_image = gr.Image(
type="pil",
label="๐ผ๏ธ Upload Your Image",
elem_classes="image-upload"
)
prompt_input = gr.Textbox(
label="โจ Animation Prompt",
value=config.default_prompt,
placeholder="Describe how you want your image to move...",
lines=2
)
duration_input = gr.Slider(
minimum=round(config.min_duration, 1),
maximum=2.5 if hasattr(spaces, 'GPU') else round(config.max_duration, 1), # Zero GPU ํ๊ฒฝ ์ ํ
step=0.1,
value=1.5, # ์์ ํ ๊ธฐ๋ณธ๊ฐ
label="โฑ๏ธ Video Duration (seconds) - Limited to 2.5s in Zero GPU",
elem_classes="slider-container"
)
with gr.Accordion("๐๏ธ Advanced Settings", open=False, elem_classes="accordion"):
negative_prompt = gr.Textbox(
label="๐ซ Negative Prompt",
value=config.default_negative_prompt,
lines=2
)
with gr.Row():
seed = gr.Slider(
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
label="๐ฒ Seed"
)
randomize_seed = gr.Checkbox(
label="๐ Randomize",
value=True
)
with gr.Row():
height_slider = gr.Slider(
minimum=config.slider_min_h,
maximum=config.slider_max_h,
step=config.mod_value,
value=config.default_height,
label="๐ Height (max 832px in Zero GPU)"
)
width_slider = gr.Slider(
minimum=config.slider_min_w,
maximum=config.slider_max_w,
step=config.mod_value,
value=config.default_width,
label="๐ Width (max 832px in Zero GPU)"
)
steps_slider = gr.Slider(
minimum=1,
maximum=30,
step=1,
value=4,
label="๐ง Quality Steps (4-8 recommended)"
)
guidance_scale = gr.Slider(
minimum=0.0,
maximum=20.0,
step=0.5,
value=1.0,
label="๐ฏ Guidance Scale",
visible=False
)
generate_btn = gr.Button(
"๐ฌ Generate Video",
variant="primary",
elem_classes="generate-btn"
)
with gr.Column(scale=1):
gr.Markdown("### ๐ฅ Generated Video")
video_output = gr.Video(
label="",
autoplay=True,
elem_classes="video-output"
)
gr.HTML("""
<div class="footer">
<p>๐ก Tip: For best results, use clear images with good lighting</p>
</div>
""")
# Examples
gr.Examples(
examples=[
["peng.png", "a penguin playfully dancing in the snow, Antarctica", 512, 512],
["forg.jpg", "the frog jumps around", 576, 320], # 16:9 aspect ratio within limits
],
inputs=[input_image, prompt_input, height_slider, width_slider],
outputs=[video_output, seed],
fn=generate_video,
cache_examples=False # ์บ์ ๋นํ์ฑํ๋ก ๋ฉ๋ชจ๋ฆฌ ์ ์ฝ
)
# ๊ฐ์ ์ฌํญ ์์ฝ (์๊ฒ)
gr.HTML("""
<div style="background: rgba(255,255,255,0.9); border-radius: 10px; padding: 15px; margin-top: 20px; font-size: 0.8em; text-align: center;">
<p style="margin: 0; color: #666;">
<strong style="color: #667eea;">Enhanced with:</strong>
๐ก๏ธ GPU Crash Protection โข โก Memory Optimization โข ๐จ Modern UI โข ๐ง Clean Architecture
</p>
</div>
""")
# Event handlers
input_image.upload(
fn=handle_image_upload,
inputs=[input_image],
outputs=[height_slider, width_slider]
)
input_image.clear(
fn=handle_image_upload,
inputs=[input_image],
outputs=[height_slider, width_slider]
)
generate_btn.click(
fn=generate_video,
inputs=[
input_image, prompt_input, height_slider, width_slider,
negative_prompt, duration_input, guidance_scale,
steps_slider, seed, randomize_seed
],
outputs=[video_output, seed]
)
if __name__ == "__main__":
demo.queue(max_size=1, concurrency_count=1).launch() # ๋ ์๊ฒฉํ ๋์์ฑ ์ ์ด |