seawolf2357's picture
Update app.py
a816f3f verified
raw
history blame
21.6 kB
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import logging
import gc
import time
import hashlib
from dataclasses import dataclass
from typing import Optional, Tuple
from functools import wraps
import threading
import os
# GPU 메모리 관리 설정
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:256' # 더 작은 청크 사용
# 로깅 설정
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# 설정 관리
@dataclass
class VideoGenerationConfig:
model_id: str = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
lora_repo_id: str = "Kijai/WanVideo_comfy"
lora_filename: str = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
mod_value: int = 32
# Zero GPU를 위한 매우 보수적인 기본값
default_height: int = 320
default_width: int = 320
max_area: float = 320.0 * 320.0 # Zero GPU에 최적화
slider_min_h: int = 128
slider_max_h: int = 512 # 더 낮은 최대값
slider_min_w: int = 128
slider_max_w: int = 512 # 더 낮은 최대값
fixed_fps: int = 24
min_frames: int = 8
max_frames: int = 30 # 더 낮은 최대 프레임 (1.25초)
default_prompt: str = "make this image move, smooth motion"
default_negative_prompt: str = "static, blur"
# GPU 메모리 최적화 설정
enable_model_cpu_offload: bool = True
enable_vae_slicing: bool = True
enable_vae_tiling: bool = True
@property
def max_duration(self):
"""최대 허용 duration (초)"""
return self.max_frames / self.fixed_fps
@property
def min_duration(self):
"""최소 허용 duration (초)"""
return self.min_frames / self.fixed_fps
config = VideoGenerationConfig()
MAX_SEED = np.iinfo(np.int32).max
# 글로벌 변수
pipe = None
generation_lock = threading.Lock()
# 성능 측정 데코레이터
def measure_time(func):
@wraps(func)
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
logger.info(f"{func.__name__} took {time.time()-start:.2f}s")
return result
return wrapper
# GPU 메모리 정리 함수
def clear_gpu_memory():
"""메모리 정리 (Zero GPU 안전)"""
gc.collect()
if torch.cuda.is_available():
try:
torch.cuda.empty_cache()
torch.cuda.synchronize()
except:
pass
# 비디오 생성기 클래스
class VideoGenerator:
def __init__(self, config: VideoGenerationConfig):
self.config = config
def calculate_dimensions(self, image: Image.Image) -> Tuple[int, int]:
orig_w, orig_h = image.size
if orig_w <= 0 or orig_h <= 0:
return self.config.default_height, self.config.default_width
aspect_ratio = orig_h / orig_w
# Zero GPU에 최적화된 매우 작은 해상도
max_area = 320.0 * 320.0 # 102,400 픽셀
# 종횡비가 너무 극단적인 경우 조정
if aspect_ratio > 2.0:
aspect_ratio = 2.0
elif aspect_ratio < 0.5:
aspect_ratio = 0.5
calc_h = round(np.sqrt(max_area * aspect_ratio))
calc_w = round(np.sqrt(max_area / aspect_ratio))
# mod_value에 맞춤
calc_h = max(self.config.mod_value, (calc_h // self.config.mod_value) * self.config.mod_value)
calc_w = max(self.config.mod_value, (calc_w // self.config.mod_value) * self.config.mod_value)
# 최대 512로 제한
new_h = int(np.clip(calc_h, self.config.slider_min_h, 512))
new_w = int(np.clip(calc_w, self.config.slider_min_w, 512))
# mod_value에 맞춤
new_h = (new_h // self.config.mod_value) * self.config.mod_value
new_w = (new_w // self.config.mod_value) * self.config.mod_value
# 최종 픽셀 수 확인
if new_h * new_w > 102400: # 320x320
# 비율을 유지하면서 축소
scale = np.sqrt(102400 / (new_h * new_w))
new_h = int((new_h * scale) // self.config.mod_value) * self.config.mod_value
new_w = int((new_w * scale) // self.config.mod_value) * self.config.mod_value
return new_h, new_w
def validate_inputs(self, image: Image.Image, prompt: str, height: int,
width: int, duration: float, steps: int) -> Tuple[bool, Optional[str]]:
if image is None:
return False, "🖼️ Please upload an input image"
if not prompt or len(prompt.strip()) == 0:
return False, "✍️ Please provide a prompt"
if len(prompt) > 200: # 더 짧은 프롬프트 제한
return False, "⚠️ Prompt is too long (max 200 characters)"
# Zero GPU에 최적화된 제한
if duration < 0.3:
return False, "⏱️ Duration too short (min 0.3s)"
if duration > 1.2: # 더 짧은 최대 duration
return False, "⏱️ Duration too long (max 1.2s for stability)"
# 픽셀 수 제한 (더 보수적으로)
max_pixels = 320 * 320 # 102,400 픽셀
if height * width > max_pixels:
return False, f"📐 Total pixels limited to {max_pixels:,} (e.g., 320×320, 256×384)"
if height > 512 or width > 512: # 더 낮은 최대값
return False, "📐 Maximum dimension is 512 pixels"
# 종횡비 체크
aspect_ratio = max(height/width, width/height)
if aspect_ratio > 2.0:
return False, "📐 Aspect ratio too extreme (max 2:1 or 1:2)"
if steps > 5: # 더 낮은 최대 스텝
return False, "🔧 Maximum 5 steps in Zero GPU environment"
return True, None
def generate_unique_filename(self, seed: int) -> str:
timestamp = int(time.time())
unique_str = f"{timestamp}_{seed}_{random.randint(1000, 9999)}"
hash_obj = hashlib.md5(unique_str.encode())
return f"video_{hash_obj.hexdigest()[:8]}.mp4"
video_generator = VideoGenerator(config)
# Gradio 함수들
def handle_image_upload(image):
if image is None:
return gr.update(value=config.default_height), gr.update(value=config.default_width)
try:
if not isinstance(image, Image.Image):
raise ValueError("Invalid image format")
new_h, new_w = video_generator.calculate_dimensions(image)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
logger.error(f"Error processing image: {e}")
gr.Warning("⚠️ Error processing image")
return gr.update(value=config.default_height), gr.update(value=config.default_width)
def get_duration(input_image, prompt, height, width, negative_prompt,
duration_seconds, guidance_scale, steps, seed, randomize_seed, progress):
# Zero GPU 환경에서 매우 보수적인 시간 할당
base_duration = 50 # 기본 50초로 증가
# 픽셀 수에 따른 추가 시간
pixels = height * width
if pixels > 147456: # 384x384 이상
base_duration += 20
elif pixels > 100000: # ~316x316 이상
base_duration += 10
# 스텝 수에 따른 추가 시간
if steps > 4:
base_duration += 15
elif steps > 2:
base_duration += 10
# 종횡비가 극단적인 경우 추가 시간
aspect_ratio = max(height/width, width/height)
if aspect_ratio > 1.5: # 3:2 이상의 비율
base_duration += 10
# 최대 90초로 제한
return min(base_duration, 90)
@spaces.GPU(duration=get_duration)
@measure_time
def generate_video(input_image, prompt, height, width,
negative_prompt=config.default_negative_prompt,
duration_seconds=0.8, guidance_scale=1, steps=3,
seed=42, randomize_seed=False,
progress=gr.Progress(track_tqdm=True)):
global pipe
# 동시 실행 방지
if not generation_lock.acquire(blocking=False):
raise gr.Error("⏳ Another video is being generated. Please wait...")
try:
progress(0.05, desc="🔍 Validating inputs...")
logger.info(f"Starting generation - Resolution: {height}x{width}, Duration: {duration_seconds}s, Steps: {steps}")
# 입력 검증
is_valid, error_msg = video_generator.validate_inputs(
input_image, prompt, height, width, duration_seconds, steps
)
if not is_valid:
logger.warning(f"Validation failed: {error_msg}")
raise gr.Error(error_msg)
# 메모리 정리
clear_gpu_memory()
progress(0.1, desc="🚀 Loading model...")
# 모델 로딩 (GPU 함수 내에서)
if pipe is None:
try:
logger.info("Loading model components...")
# 컴포넌트 로드
image_encoder = CLIPVisionModel.from_pretrained(
config.model_id,
subfolder="image_encoder",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
vae = AutoencoderKLWan.from_pretrained(
config.model_id,
subfolder="vae",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
pipe = WanImageToVideoPipeline.from_pretrained(
config.model_id,
vae=vae,
image_encoder=image_encoder,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_safetensors=True
)
# 스케줄러 설정
pipe.scheduler = UniPCMultistepScheduler.from_config(
pipe.scheduler.config, flow_shift=8.0
)
# LoRA 로드 건너뛰기 (안정성을 위해)
logger.info("Skipping LoRA for stability")
# GPU로 이동
pipe.to("cuda")
# 최적화 활성화
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
# 모델 CPU 오프로드 활성화 (메모리 절약)
pipe.enable_model_cpu_offload()
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Model loading failed: {e}")
raise gr.Error("Failed to load model")
progress(0.3, desc="🎯 Preparing image...")
# 이미지 준비
target_h = max(config.mod_value, (int(height) // config.mod_value) * config.mod_value)
target_w = max(config.mod_value, (int(width) // config.mod_value) * config.mod_value)
# 프레임 수 계산 (매우 보수적)
num_frames = min(
int(round(duration_seconds * config.fixed_fps)),
24 # 최대 24프레임 (1초)
)
num_frames = max(8, num_frames) # 최소 8프레임
logger.info(f"Generating {num_frames} frames at {target_h}x{target_w}")
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
# 이미지 리사이즈
resized_image = input_image.resize((target_w, target_h), Image.Resampling.LANCZOS)
progress(0.4, desc="🎬 Generating video...")
# 비디오 생성
with torch.inference_mode(), torch.amp.autocast('cuda', enabled=True, dtype=torch.float16):
try:
# 메모리 효율을 위한 설정
torch.cuda.empty_cache()
# 생성 파라미터 최적화
output_frames_list = pipe(
image=resized_image,
prompt=prompt[:150], # 프롬프트 길이 제한
negative_prompt=negative_prompt[:50] if negative_prompt else "",
height=target_h,
width=target_w,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
return_dict=True,
# 추가 최적화 파라미터
output_type="pil"
).frames[0]
logger.info("Video generation completed successfully")
except torch.cuda.OutOfMemoryError:
logger.error("GPU OOM error")
clear_gpu_memory()
raise gr.Error("💾 GPU out of memory. Try smaller dimensions (256x256 recommended).")
except RuntimeError as e:
if "out of memory" in str(e).lower():
logger.error("Runtime OOM error")
clear_gpu_memory()
raise gr.Error("💾 GPU memory error. Please try again with smaller settings.")
else:
logger.error(f"Runtime error: {e}")
raise gr.Error(f"❌ Generation failed: {str(e)[:50]}")
except Exception as e:
logger.error(f"Generation error: {type(e).__name__}: {e}")
raise gr.Error(f"❌ Generation failed. Try reducing resolution or steps.")
progress(0.9, desc="💾 Saving video...")
# 비디오 저장
try:
filename = video_generator.generate_unique_filename(current_seed)
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=config.fixed_fps)
logger.info(f"Video saved: {video_path}")
except Exception as e:
logger.error(f"Save error: {e}")
raise gr.Error("Failed to save video")
progress(1.0, desc="✨ Complete!")
logger.info(f"Video generated: {num_frames} frames, {target_h}x{target_w}")
# 메모리 정리
del output_frames_list
del resized_image
torch.cuda.empty_cache()
gc.collect()
return video_path, current_seed
except gr.Error:
raise
except Exception as e:
logger.error(f"Unexpected error: {type(e).__name__}: {e}")
raise gr.Error(f"❌ Unexpected error. Please try again with smaller settings.")
finally:
generation_lock.release()
clear_gpu_memory()
# CSS
css = """
.container {
max-width: 1000px;
margin: auto;
padding: 20px;
}
.header {
text-align: center;
margin-bottom: 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 30px;
border-radius: 15px;
color: white;
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.header h1 {
font-size: 2.5em;
margin-bottom: 10px;
}
.warning-box {
background: #fff3cd;
border: 1px solid #ffeaa7;
border-radius: 8px;
padding: 12px;
margin: 10px 0;
color: #856404;
font-size: 0.9em;
}
.generate-btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
font-size: 1.2em;
padding: 12px 30px;
border-radius: 25px;
border: none;
cursor: pointer;
width: 100%;
margin-top: 15px;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4);
}
"""
# Gradio UI
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_classes="container"):
# Header
gr.HTML("""
<div class="header">
<h1>🎬 AI Video Generator</h1>
<p>Transform images into videos with Wan 2.1 (Zero GPU Optimized)</p>
</div>
""")
# 경고
gr.HTML("""
<div class="warning-box">
<strong>⚡ Zero GPU Strict Limitations:</strong>
<ul style="margin: 5px 0; padding-left: 20px;">
<li>Max resolution: 320×320 (recommended 256×256)</li>
<li>Max duration: 1.2 seconds</li>
<li>Max steps: 5 (2-3 recommended)</li>
<li>Processing time: ~50-80 seconds</li>
<li>Please wait for completion before next generation</li>
</ul>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
type="pil",
label="🖼️ Upload Image"
)
prompt_input = gr.Textbox(
label="✨ Animation Prompt",
value=config.default_prompt,
placeholder="Describe the motion...",
lines=2,
max_lines=3
)
duration_input = gr.Slider(
minimum=0.3,
maximum=1.2,
step=0.1,
value=0.8,
label="⏱️ Duration (seconds)"
)
with gr.Accordion("⚙️ Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=config.default_negative_prompt,
lines=1
)
with gr.Row():
height_slider = gr.Slider(
minimum=128,
maximum=512,
step=32,
value=256,
label="Height"
)
width_slider = gr.Slider(
minimum=128,
maximum=512,
step=32,
value=256,
label="Width"
)
steps_slider = gr.Slider(
minimum=1,
maximum=5,
step=1,
value=2,
label="Steps (2-3 recommended)"
)
with gr.Row():
seed = gr.Slider(
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
label="Seed"
)
randomize_seed = gr.Checkbox(
label="Random",
value=True
)
guidance_scale = gr.Slider(
minimum=0.0,
maximum=5.0,
step=0.5,
value=1.0,
label="Guidance Scale",
visible=False
)
generate_btn = gr.Button(
"🎬 Generate Video",
variant="primary",
elem_classes="generate-btn"
)
with gr.Column(scale=1):
video_output = gr.Video(
label="Generated Video",
autoplay=True
)
gr.Markdown("""
### 💡 Tips for Zero GPU:
- **Best**: 256×256 resolution
- **Safe**: 2-3 steps only
- **Duration**: 0.8s is optimal
- **Prompts**: Keep short and simple
- **Important**: Wait for completion!
### ⚠️ If GPU stops:
- Reduce resolution to 256×256
- Use only 2 steps
- Keep duration under 1 second
- Avoid extreme aspect ratios
""")
# Event handlers
input_image.upload(
fn=handle_image_upload,
inputs=[input_image],
outputs=[height_slider, width_slider]
)
generate_btn.click(
fn=generate_video,
inputs=[
input_image, prompt_input, height_slider, width_slider,
negative_prompt, duration_input, guidance_scale,
steps_slider, seed, randomize_seed
],
outputs=[video_output, seed]
)
if __name__ == "__main__":
logger.info("Starting app in Zero GPU environment")
demo.queue(max_size=2) # 작은 큐 사이즈
demo.launch()