Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,69 @@
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
20 |
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
image = pipe(
|
29 |
-
prompt = prompt,
|
30 |
-
negative_prompt = negative_prompt,
|
31 |
-
guidance_scale = guidance_scale,
|
32 |
-
num_inference_steps = num_inference_steps,
|
33 |
-
width = width,
|
34 |
-
height = height,
|
35 |
-
generator = generator
|
36 |
-
).images[0]
|
37 |
-
|
38 |
return image
|
39 |
|
40 |
-
examples = [
|
41 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
42 |
-
"An astronaut riding a green horse",
|
43 |
-
"A delicious ceviche cheesecake slice",
|
44 |
-
]
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
}
|
51 |
"""
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
with gr.Blocks(css=css) as demo:
|
59 |
-
|
60 |
-
with gr.Column(elem_id="col-container"):
|
61 |
-
gr.Markdown(f"""
|
62 |
-
# Text-to-Image Gradio Template
|
63 |
-
Currently running on {power_device}.
|
64 |
-
""")
|
65 |
-
|
66 |
with gr.Row():
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
max_lines=1,
|
72 |
-
placeholder="Enter your prompt",
|
73 |
-
container=False,
|
74 |
-
)
|
75 |
-
|
76 |
-
run_button = gr.Button("Run", scale=0)
|
77 |
-
|
78 |
-
result = gr.Image(label="Result", show_label=False)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
label="Seed",
|
91 |
-
minimum=0,
|
92 |
-
maximum=MAX_SEED,
|
93 |
-
step=1,
|
94 |
-
value=0,
|
95 |
-
)
|
96 |
-
|
97 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
-
|
99 |
-
with gr.Row():
|
100 |
-
|
101 |
-
width = gr.Slider(
|
102 |
-
label="Width",
|
103 |
-
minimum=256,
|
104 |
-
maximum=MAX_IMAGE_SIZE,
|
105 |
-
step=32,
|
106 |
-
value=512,
|
107 |
-
)
|
108 |
-
|
109 |
-
height = gr.Slider(
|
110 |
-
label="Height",
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
-
)
|
116 |
-
|
117 |
-
with gr.Row():
|
118 |
-
|
119 |
-
guidance_scale = gr.Slider(
|
120 |
-
label="Guidance scale",
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
-
)
|
126 |
-
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
-
minimum=1,
|
130 |
-
maximum=12,
|
131 |
-
step=1,
|
132 |
-
value=2,
|
133 |
-
)
|
134 |
-
|
135 |
-
gr.Examples(
|
136 |
-
examples = examples,
|
137 |
-
inputs = [prompt]
|
138 |
-
)
|
139 |
-
|
140 |
-
run_button.click(
|
141 |
-
fn = infer,
|
142 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
143 |
-
outputs = [result]
|
144 |
-
)
|
145 |
-
|
146 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from safetensors.torch import load_file
|
6 |
+
import spaces
|
7 |
|
|
|
8 |
|
9 |
+
# Constants
|
10 |
+
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
11 |
+
repo = "ByteDance/SDXL-Lightning"
|
12 |
+
checkpoints = {
|
13 |
+
"1-Step" : ["sdxl_lightning_1step_unet_x0.safetensors", 1],
|
14 |
+
"2-Step" : ["sdxl_lightning_2step_unet.safetensors", 2],
|
15 |
+
"4-Step" : ["sdxl_lightning_4step_unet.safetensors", 4],
|
16 |
+
"8-Step" : ["sdxl_lightning_8step_unet.safetensors", 8],
|
17 |
+
}
|
18 |
+
|
19 |
|
20 |
+
# Ensure model and scheduler are initialized in GPU-enabled function
|
21 |
+
#if torch.cuda.is_available():
|
22 |
+
# pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
23 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.bfloat16, variant="fp16").to("cpu")
|
24 |
|
25 |
+
# Function
|
26 |
+
#@spaces.GPU(enable_queue=True)
|
27 |
+
def generate_image(prompt, ckpt):
|
28 |
|
29 |
+
checkpoint = checkpoints[ckpt][0]
|
30 |
+
num_inference_steps = checkpoints[ckpt][1]
|
31 |
+
|
32 |
+
if num_inference_steps==1:
|
33 |
+
# Ensure sampler uses "trailing" timesteps and "sample" prediction type for 1-step inference.
|
34 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
35 |
+
else:
|
36 |
+
# Ensure sampler uses "trailing" timesteps.
|
37 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
38 |
|
39 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
|
40 |
+
image = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
return image
|
42 |
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Gradio Interface
|
45 |
+
description = """
|
46 |
+
This demo utilizes the SDXL-Lightning model by ByteDance, which is a fast text-to-image generative model capable of producing high-quality images in 4 steps.
|
47 |
+
As a community effort, this demo was put together by AngryPenguin. Link to model: https://huggingface.co/ByteDance/SDXL-Lightning
|
|
|
48 |
"""
|
49 |
|
50 |
+
with gr.Blocks(css="style.css") as demo:
|
51 |
+
gr.HTML("<h1><center>Text-to-Image with SDXL Lightning ⚡</center></h1>")
|
52 |
+
gr.Markdown(description)
|
53 |
+
with gr.Group():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
with gr.Row():
|
55 |
+
prompt = gr.Textbox(label='Enter you image prompt:', scale=8)
|
56 |
+
ckpt = gr.Dropdown(label='Select Inference Steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
|
57 |
+
submit = gr.Button(scale=1, variant='primary')
|
58 |
+
img = gr.Image(label='SDXL-Lightening Generate Image')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
prompt.submit(fn=generate_image,
|
61 |
+
inputs=[prompt, ckpt],
|
62 |
+
outputs=img,
|
63 |
+
)
|
64 |
+
submit.click(fn=generate_image,
|
65 |
+
inputs=[prompt, ckpt],
|
66 |
+
outputs=img,
|
67 |
+
)
|
68 |
+
|
69 |
+
demo.queue().launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|