HelloSun commited on
Commit
17f7bc2
·
verified ·
1 Parent(s): a0bd390

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -131
app.py CHANGED
@@ -1,146 +1,69 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
 
 
 
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
 
 
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
 
 
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
 
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
 
 
 
 
 
 
 
25
 
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
  return image
39
 
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
 
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
- with gr.Blocks(css=css) as demo:
59
-
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
66
  with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
 
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
-
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
145
-
146
- demo.queue().launch()
 
1
  import gradio as gr
 
 
 
2
  import torch
3
+ from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
4
+ from huggingface_hub import hf_hub_download
5
+ from safetensors.torch import load_file
6
+ import spaces
7
 
 
8
 
9
+ # Constants
10
+ base = "stabilityai/stable-diffusion-xl-base-1.0"
11
+ repo = "ByteDance/SDXL-Lightning"
12
+ checkpoints = {
13
+ "1-Step" : ["sdxl_lightning_1step_unet_x0.safetensors", 1],
14
+ "2-Step" : ["sdxl_lightning_2step_unet.safetensors", 2],
15
+ "4-Step" : ["sdxl_lightning_4step_unet.safetensors", 4],
16
+ "8-Step" : ["sdxl_lightning_8step_unet.safetensors", 8],
17
+ }
18
+
19
 
20
+ # Ensure model and scheduler are initialized in GPU-enabled function
21
+ #if torch.cuda.is_available():
22
+ # pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
23
+ pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.bfloat16, variant="fp16").to("cpu")
24
 
25
+ # Function
26
+ #@spaces.GPU(enable_queue=True)
27
+ def generate_image(prompt, ckpt):
28
 
29
+ checkpoint = checkpoints[ckpt][0]
30
+ num_inference_steps = checkpoints[ckpt][1]
31
+
32
+ if num_inference_steps==1:
33
+ # Ensure sampler uses "trailing" timesteps and "sample" prediction type for 1-step inference.
34
+ pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
35
+ else:
36
+ # Ensure sampler uses "trailing" timesteps.
37
+ pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
38
 
39
+ pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
40
+ image = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0).images[0]
 
 
 
 
 
 
 
 
 
 
41
  return image
42
 
 
 
 
 
 
43
 
44
+ # Gradio Interface
45
+ description = """
46
+ This demo utilizes the SDXL-Lightning model by ByteDance, which is a fast text-to-image generative model capable of producing high-quality images in 4 steps.
47
+ As a community effort, this demo was put together by AngryPenguin. Link to model: https://huggingface.co/ByteDance/SDXL-Lightning
 
48
  """
49
 
50
+ with gr.Blocks(css="style.css") as demo:
51
+ gr.HTML("<h1><center>Text-to-Image with SDXL Lightning ⚡</center></h1>")
52
+ gr.Markdown(description)
53
+ with gr.Group():
 
 
 
 
 
 
 
 
 
54
  with gr.Row():
55
+ prompt = gr.Textbox(label='Enter you image prompt:', scale=8)
56
+ ckpt = gr.Dropdown(label='Select Inference Steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
57
+ submit = gr.Button(scale=1, variant='primary')
58
+ img = gr.Image(label='SDXL-Lightening Generate Image')
 
 
 
 
 
 
 
 
59
 
60
+ prompt.submit(fn=generate_image,
61
+ inputs=[prompt, ckpt],
62
+ outputs=img,
63
+ )
64
+ submit.click(fn=generate_image,
65
+ inputs=[prompt, ckpt],
66
+ outputs=img,
67
+ )
68
+
69
+ demo.queue().launch(share=True)