HelloSun commited on
Commit
0c870de
·
verified ·
1 Parent(s): 5b2813b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +162 -132
app.py CHANGED
@@ -1,146 +1,176 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
8
-
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
-
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
-
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
-
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
39
-
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
-
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
51
- """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
  else:
56
- power_device = "CPU"
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  with gr.Blocks(css=css) as demo:
59
-
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
66
  with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
-
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
  with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
  )
116
-
 
 
 
 
 
 
 
117
  with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
  step=1,
132
- value=2,
133
  )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
 
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
145
 
146
- demo.queue().launch()
 
 
1
+ from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
2
+ from compel import Compel, ReturnedEmbeddingsType
 
 
3
  import torch
4
+ import os
5
 
6
+ try:
7
+ import intel_extension_for_pytorch as ipex
8
+ except:
9
+ pass
10
+
11
+ from PIL import Image
12
+ import numpy as np
13
+ import gradio as gr
14
+ import psutil
15
+ from sfast.compilers.stable_diffusion_pipeline_compiler import (
16
+ compile,
17
+ CompilationConfig,
18
+ )
19
+
20
+
21
+ SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
22
+ HF_TOKEN = os.environ.get("HF_TOKEN", None)
23
+ # check if MPS is available OSX only M1/M2/M3 chips
24
+ mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
25
+ xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
26
+ device = torch.device(
27
+ "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
28
+ )
29
+ torch_device = device
30
+ torch_dtype = torch.float16
31
+
32
+ print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
33
+ print(f"device: {device}")
34
+
35
+ if mps_available:
36
+ device = torch.device("mps")
37
+ torch_device = "cpu"
38
+ torch_dtype = torch.float32
39
+
40
+ model_id = "stabilityai/stable-diffusion-xl-base-1.0"
 
 
 
 
 
 
 
 
 
 
41
 
42
+ if SAFETY_CHECKER == "True":
43
+ pipe = DiffusionPipeline.from_pretrained(model_id)
44
  else:
45
+ pipe = DiffusionPipeline.from_pretrained(model_id, safety_checker=None)
46
 
47
+ pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
48
+ pipe.load_lora_weights(
49
+ "latent-consistency/lcm-lora-sdxl",
50
+ use_auth_token=HF_TOKEN,
51
+ )
52
+ if device.type != "mps":
53
+ pipe.unet.to(memory_format=torch.channels_last)
54
+ pipe.to(device=torch_device, dtype=torch_dtype).to(device)
55
+
56
+ # Load LCM LoRA
57
+
58
+ config = CompilationConfig.Default()
59
+ config.enable_xformers = True
60
+ config.enable_triton = True
61
+ config.enable_cuda_graph = True
62
+ pipe = compile(pipe, config=config)
63
+
64
+ compel_proc = Compel(
65
+ tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
66
+ text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
67
+ returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
68
+ requires_pooled=[False, True],
69
+ )
70
+
71
+
72
+ def predict(
73
+ prompt,
74
+ guidance,
75
+ steps,
76
+ seed=1231231,
77
+ randomize_bt=False,
78
+ progress=gr.Progress(track_tqdm=True),
79
+ ):
80
+ if randomize_bt:
81
+ seed = np.random.randint(0, 2**32 - 1)
82
+ generator = torch.manual_seed(seed)
83
+ prompt_embeds, pooled_prompt_embeds = compel_proc(prompt)
84
+
85
+ results = pipe(
86
+ prompt_embeds=prompt_embeds,
87
+ pooled_prompt_embeds=pooled_prompt_embeds,
88
+ generator=generator,
89
+ num_inference_steps=steps,
90
+ guidance_scale=guidance,
91
+ width=1024,
92
+ height=1024,
93
+ # original_inference_steps=params.lcm_steps,
94
+ output_type="pil",
95
+ )
96
+ nsfw_content_detected = (
97
+ results.nsfw_content_detected[0]
98
+ if "nsfw_content_detected" in results
99
+ else False
100
+ )
101
+ if nsfw_content_detected:
102
+ raise gr.Error("NSFW content detected.")
103
+ return results.images[0], seed
104
+
105
+
106
+ css = """
107
+ #container{
108
+ margin: 0 auto;
109
+ max-width: 40rem;
110
+ }
111
+ #intro{
112
+ max-width: 100%;
113
+ text-align: center;
114
+ margin: 0 auto;
115
+ }
116
+ """
117
  with gr.Blocks(css=css) as demo:
118
+ with gr.Column(elem_id="container"):
119
+ gr.Markdown(
120
+ """# SDXL in 4 steps with Latent Consistency LoRAs
121
+ SDXL is loaded with a LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more on our blog](https://huggingface.co/blog/lcm_lora) or [technical report](https://huggingface.co/papers/2311.05556).
122
+ """,
123
+ elem_id="intro",
124
+ )
125
  with gr.Row():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
  with gr.Row():
127
+ prompt = gr.Textbox(
128
+ placeholder="Insert your prompt here:", scale=5, container=False
 
 
 
 
 
 
 
 
 
 
 
 
 
129
  )
130
+ generate_bt = gr.Button("Generate", scale=1)
131
+
132
+ image = gr.Image(type="filepath")
133
+ with gr.Accordion("Advanced options", open=False):
134
+ guidance = gr.Slider(
135
+ label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
136
+ )
137
+ steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1)
138
  with gr.Row():
139
+ seed = gr.Slider(
140
+ randomize=True,
141
+ minimum=0,
142
+ maximum=12013012031030,
143
+ label="Seed",
 
 
 
 
 
 
 
 
144
  step=1,
145
+ scale=5,
146
  )
147
+ with gr.Group():
148
+ randomize_bt = gr.Checkbox(label="Randomize", value=False)
149
+ random_seed = gr.Textbox(show_label=False)
150
+ with gr.Accordion("Run with diffusers"):
151
+ gr.Markdown(
152
+ """## Running LCM-LoRAs it with `diffusers`
153
+ ```bash
154
+ pip install diffusers==0.23.0
155
+ ```
156
+
157
+ ```py
158
+ from diffusers import DiffusionPipeline, LCMScheduler
159
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda")
160
+ pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
161
+ pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") #yes, it's a normal LoRA
162
+ results = pipe(
163
+ prompt="The spirit of a tamagotchi wandering in the city of Vienna",
164
+ num_inference_steps=4,
165
+ guidance_scale=0.0,
166
+ )
167
+ results.images[0]
168
+ ```
169
+ """
170
+ )
171
 
172
+ inputs = [prompt, guidance, steps, seed, randomize_bt]
173
+ generate_bt.click(fn=predict, inputs=inputs, outputs=[image, random_seed])
 
 
 
174
 
175
+ demo.queue(api_open=False)
176
+ demo.launch(show_api=False)