Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,176 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
"An astronaut riding a green horse",
|
43 |
-
"A delicious ceviche cheesecake slice",
|
44 |
-
]
|
45 |
-
|
46 |
-
css="""
|
47 |
-
#col-container {
|
48 |
-
margin: 0 auto;
|
49 |
-
max-width: 520px;
|
50 |
-
}
|
51 |
-
"""
|
52 |
|
53 |
-
if
|
54 |
-
|
55 |
else:
|
56 |
-
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
with gr.Blocks(css=css) as demo:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
with gr.Row():
|
67 |
-
|
68 |
-
prompt = gr.Text(
|
69 |
-
label="Prompt",
|
70 |
-
show_label=False,
|
71 |
-
max_lines=1,
|
72 |
-
placeholder="Enter your prompt",
|
73 |
-
container=False,
|
74 |
-
)
|
75 |
-
|
76 |
-
run_button = gr.Button("Run", scale=0)
|
77 |
-
|
78 |
-
result = gr.Image(label="Result", show_label=False)
|
79 |
-
|
80 |
-
with gr.Accordion("Advanced Settings", open=False):
|
81 |
-
|
82 |
-
negative_prompt = gr.Text(
|
83 |
-
label="Negative prompt",
|
84 |
-
max_lines=1,
|
85 |
-
placeholder="Enter a negative prompt",
|
86 |
-
visible=False,
|
87 |
-
)
|
88 |
-
|
89 |
-
seed = gr.Slider(
|
90 |
-
label="Seed",
|
91 |
-
minimum=0,
|
92 |
-
maximum=MAX_SEED,
|
93 |
-
step=1,
|
94 |
-
value=0,
|
95 |
-
)
|
96 |
-
|
97 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
-
|
99 |
with gr.Row():
|
100 |
-
|
101 |
-
|
102 |
-
label="Width",
|
103 |
-
minimum=256,
|
104 |
-
maximum=MAX_IMAGE_SIZE,
|
105 |
-
step=32,
|
106 |
-
value=512,
|
107 |
-
)
|
108 |
-
|
109 |
-
height = gr.Slider(
|
110 |
-
label="Height",
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
)
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
with gr.Row():
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
-
)
|
126 |
-
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
-
minimum=1,
|
130 |
-
maximum=12,
|
131 |
step=1,
|
132 |
-
|
133 |
)
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
|
141 |
-
fn =
|
142 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
143 |
-
outputs = [result]
|
144 |
-
)
|
145 |
|
146 |
-
demo.queue()
|
|
|
|
1 |
+
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
|
2 |
+
from compel import Compel, ReturnedEmbeddingsType
|
|
|
|
|
3 |
import torch
|
4 |
+
import os
|
5 |
|
6 |
+
try:
|
7 |
+
import intel_extension_for_pytorch as ipex
|
8 |
+
except:
|
9 |
+
pass
|
10 |
+
|
11 |
+
from PIL import Image
|
12 |
+
import numpy as np
|
13 |
+
import gradio as gr
|
14 |
+
import psutil
|
15 |
+
from sfast.compilers.stable_diffusion_pipeline_compiler import (
|
16 |
+
compile,
|
17 |
+
CompilationConfig,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
22 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
23 |
+
# check if MPS is available OSX only M1/M2/M3 chips
|
24 |
+
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
25 |
+
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
26 |
+
device = torch.device(
|
27 |
+
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
|
28 |
+
)
|
29 |
+
torch_device = device
|
30 |
+
torch_dtype = torch.float16
|
31 |
+
|
32 |
+
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
|
33 |
+
print(f"device: {device}")
|
34 |
+
|
35 |
+
if mps_available:
|
36 |
+
device = torch.device("mps")
|
37 |
+
torch_device = "cpu"
|
38 |
+
torch_dtype = torch.float32
|
39 |
+
|
40 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
if SAFETY_CHECKER == "True":
|
43 |
+
pipe = DiffusionPipeline.from_pretrained(model_id)
|
44 |
else:
|
45 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, safety_checker=None)
|
46 |
|
47 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
48 |
+
pipe.load_lora_weights(
|
49 |
+
"latent-consistency/lcm-lora-sdxl",
|
50 |
+
use_auth_token=HF_TOKEN,
|
51 |
+
)
|
52 |
+
if device.type != "mps":
|
53 |
+
pipe.unet.to(memory_format=torch.channels_last)
|
54 |
+
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
55 |
+
|
56 |
+
# Load LCM LoRA
|
57 |
+
|
58 |
+
config = CompilationConfig.Default()
|
59 |
+
config.enable_xformers = True
|
60 |
+
config.enable_triton = True
|
61 |
+
config.enable_cuda_graph = True
|
62 |
+
pipe = compile(pipe, config=config)
|
63 |
+
|
64 |
+
compel_proc = Compel(
|
65 |
+
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
66 |
+
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
67 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
68 |
+
requires_pooled=[False, True],
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
def predict(
|
73 |
+
prompt,
|
74 |
+
guidance,
|
75 |
+
steps,
|
76 |
+
seed=1231231,
|
77 |
+
randomize_bt=False,
|
78 |
+
progress=gr.Progress(track_tqdm=True),
|
79 |
+
):
|
80 |
+
if randomize_bt:
|
81 |
+
seed = np.random.randint(0, 2**32 - 1)
|
82 |
+
generator = torch.manual_seed(seed)
|
83 |
+
prompt_embeds, pooled_prompt_embeds = compel_proc(prompt)
|
84 |
+
|
85 |
+
results = pipe(
|
86 |
+
prompt_embeds=prompt_embeds,
|
87 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
88 |
+
generator=generator,
|
89 |
+
num_inference_steps=steps,
|
90 |
+
guidance_scale=guidance,
|
91 |
+
width=1024,
|
92 |
+
height=1024,
|
93 |
+
# original_inference_steps=params.lcm_steps,
|
94 |
+
output_type="pil",
|
95 |
+
)
|
96 |
+
nsfw_content_detected = (
|
97 |
+
results.nsfw_content_detected[0]
|
98 |
+
if "nsfw_content_detected" in results
|
99 |
+
else False
|
100 |
+
)
|
101 |
+
if nsfw_content_detected:
|
102 |
+
raise gr.Error("NSFW content detected.")
|
103 |
+
return results.images[0], seed
|
104 |
+
|
105 |
+
|
106 |
+
css = """
|
107 |
+
#container{
|
108 |
+
margin: 0 auto;
|
109 |
+
max-width: 40rem;
|
110 |
+
}
|
111 |
+
#intro{
|
112 |
+
max-width: 100%;
|
113 |
+
text-align: center;
|
114 |
+
margin: 0 auto;
|
115 |
+
}
|
116 |
+
"""
|
117 |
with gr.Blocks(css=css) as demo:
|
118 |
+
with gr.Column(elem_id="container"):
|
119 |
+
gr.Markdown(
|
120 |
+
"""# SDXL in 4 steps with Latent Consistency LoRAs
|
121 |
+
SDXL is loaded with a LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more on our blog](https://huggingface.co/blog/lcm_lora) or [technical report](https://huggingface.co/papers/2311.05556).
|
122 |
+
""",
|
123 |
+
elem_id="intro",
|
124 |
+
)
|
125 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
with gr.Row():
|
127 |
+
prompt = gr.Textbox(
|
128 |
+
placeholder="Insert your prompt here:", scale=5, container=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
)
|
130 |
+
generate_bt = gr.Button("Generate", scale=1)
|
131 |
+
|
132 |
+
image = gr.Image(type="filepath")
|
133 |
+
with gr.Accordion("Advanced options", open=False):
|
134 |
+
guidance = gr.Slider(
|
135 |
+
label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
|
136 |
+
)
|
137 |
+
steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1)
|
138 |
with gr.Row():
|
139 |
+
seed = gr.Slider(
|
140 |
+
randomize=True,
|
141 |
+
minimum=0,
|
142 |
+
maximum=12013012031030,
|
143 |
+
label="Seed",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
step=1,
|
145 |
+
scale=5,
|
146 |
)
|
147 |
+
with gr.Group():
|
148 |
+
randomize_bt = gr.Checkbox(label="Randomize", value=False)
|
149 |
+
random_seed = gr.Textbox(show_label=False)
|
150 |
+
with gr.Accordion("Run with diffusers"):
|
151 |
+
gr.Markdown(
|
152 |
+
"""## Running LCM-LoRAs it with `diffusers`
|
153 |
+
```bash
|
154 |
+
pip install diffusers==0.23.0
|
155 |
+
```
|
156 |
+
|
157 |
+
```py
|
158 |
+
from diffusers import DiffusionPipeline, LCMScheduler
|
159 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda")
|
160 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
161 |
+
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") #yes, it's a normal LoRA
|
162 |
+
results = pipe(
|
163 |
+
prompt="The spirit of a tamagotchi wandering in the city of Vienna",
|
164 |
+
num_inference_steps=4,
|
165 |
+
guidance_scale=0.0,
|
166 |
+
)
|
167 |
+
results.images[0]
|
168 |
+
```
|
169 |
+
"""
|
170 |
+
)
|
171 |
|
172 |
+
inputs = [prompt, guidance, steps, seed, randomize_bt]
|
173 |
+
generate_bt.click(fn=predict, inputs=inputs, outputs=[image, random_seed])
|
|
|
|
|
|
|
174 |
|
175 |
+
demo.queue(api_open=False)
|
176 |
+
demo.launch(show_api=False)
|