HemaAM commited on
Commit
cfa509a
·
1 Parent(s): 4197546

Upload app.py

Browse files

This is the initial upload/commit of the application file that does inference of the custom resnet model.

Files changed (1) hide show
  1. app.py +134 -0
app.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ ## Import the required Modules/Packages
4
+ import pandas as pd
5
+ import torch
6
+ from torch.nn import functional as F
7
+ import torchvision
8
+ from torchvision import transforms
9
+ import numpy as np
10
+ import gradio as gr
11
+ from PIL import Image
12
+ from collections import OrderedDict
13
+ from pytorch_grad_cam import GradCAM
14
+ from pytorch_grad_cam.utils.image import show_cam_on_image
15
+ from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
16
+
17
+ from custom_resnet_model.model import custResNet
18
+
19
+ classes = {0: 'airplane',
20
+ 1: 'automobile',
21
+ 2: 'bird',
22
+ 3: 'cat',
23
+ 4: 'deer',
24
+ 5: 'dog',
25
+ 6: 'frog',
26
+ 7: 'horse',
27
+ 8: 'ship',
28
+ 9: 'truck'}
29
+
30
+ mis_classified_df = pd.read_csv('misclassified_images.csv')
31
+ mis_classified_df['ground_truths'] = mis_classified_df['ground_truths'].map(classes)
32
+ mis_classified_df['predicted_vals'] = mis_classified_df['predicted_vals'].map(classes)
33
+ mis_classified_df = mis_classified_df.sample(frac=1)
34
+
35
+ device = torch.device("cuda")
36
+
37
+ model1 = custResNet()
38
+ model1.load_state_dict(torch.load('cust_resnet_model_saved1.pth', map_location=torch.device('cpu')), strict=False)
39
+ model1.eval()
40
+
41
+ transform = transforms.Compose([
42
+ transforms.ToTensor(),
43
+ transforms.Normalize(mean=[0.49139968, 0.48215827, 0.44653124], std=[0.24703233, 0.24348505, 0.26158768])
44
+ ])
45
+
46
+ inv_transform = transforms.Normalize(mean=[-(0.49139968/0.24703233), -(0.48215827/0.24348505), -(0.44653124/0.26158768)], std=[(0.24703233), (1/0.24348505), (1/0.26158768)])
47
+
48
+ def get_target_layer(target_layer):
49
+
50
+ if (target_layer==4):
51
+ result = [model1.block3]
52
+ elif (target_layer==3):
53
+ result = [model1.block2]
54
+ elif (target_layer==2):
55
+ result = [model1.block1]
56
+ elif (target_layer==1):
57
+ result = [model1.prep_block]
58
+ else:
59
+ result = [model1.block3]
60
+
61
+ return result
62
+
63
+ grad_cam_call_list = [GradCAM(model=model1, target_layers=get_target_layer(i), use_cuda=(device == 'cuda')) for i in range(4)]
64
+
65
+ def classify_image(input_image, top_classes=3, grad_cam=True, target_layers=[2, 3], transparency=0.7):
66
+ input_ = transform(input_image).unsqueeze(0)
67
+
68
+ output = model1(input_)
69
+ output = F.softmax(output.flatten(), dim=-1)
70
+
71
+ confidences = [(classes[i], float(output[i])) for i in range(10)]
72
+ confidences.sort(key=lambda x: x[1], reverse=True)
73
+ confidences = OrderedDict(confidences[:top_classes])
74
+
75
+ label = torch.argmax(output).item()
76
+
77
+ results = []
78
+ if grad_cam:
79
+ for layer in target_layers:
80
+
81
+ grad_cam = grad_cam_call_list[layer]
82
+ targets = [ClassifierOutputTarget(label)]
83
+ grayscale_cam = grad_cam(input_tensor=input_, targets=targets)
84
+ grayscale_cam = grayscale_cam[0, :]
85
+ output_image = show_cam_on_image(input_image / 255, grayscale_cam, use_rgb=True, image_weight=transparency)
86
+ results.append((output_image, f"Layer {layer - 4}"))
87
+ else:
88
+ results.append((input_image, "Input"))
89
+
90
+ return results, confidences
91
+
92
+ demo1 = gr.Interface(
93
+ fn=classify_image,
94
+ inputs=[
95
+ gr.Image(shape=(32, 32), label="Input Image", value='examples/cat.jpg'),
96
+ gr.Slider(1, 10, value=3, step=1, label="Number of Top Classes"),
97
+ gr.Checkbox(label="Show GradCAM?", value=True),
98
+ #gr.Slider(-4, -1, value=-2, step=1, label="Which Layer?"),
99
+ gr.CheckboxGroup(["-4", "-3", "-2", "-1"], value=["-2", "-1"], label="Which Network Layer(s)?", type='index'),
100
+ gr.Slider(0, 1, value=0.7, label="Transparency", step=0.1)
101
+ ],
102
+ outputs=[gr.Gallery(label="Output Images", columns=2, rows=2),
103
+ gr.Label(label='Top Classes')],
104
+ examples=[[f'examples/{k}.jpg'] for k in classes.values()]
105
+ )
106
+
107
+ def show_mis_classifications(num_examples=20, grad_cam=True, target_layer=-2, transparency=0.5):
108
+ result = list()
109
+ for index, row in mis_classified_df.iterrows():
110
+ image = np.asarray(Image.open(f'missed_examples2/{index}.jpg'))
111
+ output_image, confidence = classify_image(image, top_classes=1, grad_cam=grad_cam, target_layers=[4+target_layer],
112
+ transparency=transparency)
113
+ truth = row['ground_truths']
114
+ predicted = list(confidence)[0]
115
+ if truth != predicted:
116
+ result.append((output_image[0][0], f"{row['ground_truths']} / {predicted}"))
117
+ if len(result) >= num_examples:
118
+ break
119
+ return result
120
+
121
+ demo2 = gr.Interface(
122
+ fn=show_mis_classifications,
123
+ inputs=[
124
+ gr.Number(value=20, minimum=1, maximum=len(mis_classified_df), label="No. of missclassified Examples", precision=0),
125
+ gr.Checkbox(label="Show GradCAM?", value=True),
126
+ gr.Slider(-4, -1, value=-2, step=1, label="Which Layer?"),
127
+ gr.Slider(0, 1, value=0.7, label="Transparency", step=0.1),
128
+ ],
129
+ outputs=[gr.Gallery(label="Missclassified Images (Truth / Predicted)", columns=4)]
130
+ )
131
+
132
+ demo = gr.TabbedInterface([demo1, demo2], ["Examples", "Misclassified Examples"])
133
+ demo.launch(debug=True)
134
+