## Import the required Modules/Packages import pandas as pd import torch from torch.nn import functional as F import torchvision from torchvision import transforms import numpy as np import gradio as gr from PIL import Image from collections import OrderedDict from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget from model import custResNet classes = {0: 'airplane', 1: 'automobile', 2: 'bird', 3: 'cat', 4: 'deer', 5: 'dog', 6: 'frog', 7: 'horse', 8: 'ship', 9: 'truck'} mis_classified_df = pd.read_csv('misclassified_images.csv') mis_classified_df['ground_truths'] = mis_classified_df['ground_truths'].map(classes) mis_classified_df['predicted_vals'] = mis_classified_df['predicted_vals'].map(classes) mis_classified_df = mis_classified_df.sample(frac=1) device = torch.device("cuda") model1 = custResNet() model1.load_state_dict(torch.load('cust_resnet_model.pth', map_location=torch.device('cpu')), strict=False) model1.eval() transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.49139968, 0.48215827, 0.44653124], std=[0.24703233, 0.24348505, 0.26158768]) ]) inv_transform = transforms.Normalize(mean=[-(0.49139968/0.24703233), -(0.48215827/0.24348505), -(0.44653124/0.26158768)], std=[(0.24703233), (1/0.24348505), (1/0.26158768)]) def get_target_layer(target_layer): if (target_layer==4): result = [model1.block3] elif (target_layer==3): result = [model1.block2] elif (target_layer==2): result = [model1.block1] elif (target_layer==1): result = [model1.prep_block] else: result = [model1.block3] return result grad_cam_call_list = [GradCAM(model=model1, target_layers=get_target_layer(i), use_cuda=(device == 'cuda')) for i in range(4)] def classify_image(input_image, top_classes=3, grad_cam=True, target_layers=[2, 3], transparency=0.7): input_ = transform(input_image).unsqueeze(0) output = model1(input_) output = F.softmax(output.flatten(), dim=-1) confidences = [(classes[i], float(output[i])) for i in range(10)] confidences.sort(key=lambda x: x[1], reverse=True) confidences = OrderedDict(confidences[:top_classes]) label = torch.argmax(output).item() results = [] if grad_cam: for layer in target_layers: grad_cam = grad_cam_call_list[layer] targets = [ClassifierOutputTarget(label)] grayscale_cam = grad_cam(input_tensor=input_, targets=targets) grayscale_cam = grayscale_cam[0, :] output_image = show_cam_on_image(input_image / 255, grayscale_cam, use_rgb=True, image_weight=transparency) results.append((output_image, f"Layer {layer - 4}")) else: results.append((input_image, "Input")) return results, confidences demo1 = gr.Interface( fn=classify_image, inputs=[ gr.Image(shape=(32, 32), label="Input Image", value='test_images/cat.jpg'), gr.Slider(1, 10, value=3, step=1, label="Number of Top Classes"), gr.Checkbox(label="Show GradCAM?", value=True), #gr.Slider(-4, -1, value=-2, step=1, label="Which Layer?"), gr.CheckboxGroup(["-4", "-3", "-2", "-1"], value=["-2", "-1"], label="Which Network Layer(s)?", type='index'), gr.Slider(0, 1, value=0.7, label="Transparency", step=0.1) ], outputs=[gr.Gallery(label="Output Images", columns=2, rows=2), gr.Label(label='Top Classes')], examples=[[f'test_images/{k}.jpg'] for k in classes.values()] ) def show_mis_classifications(num_examples=20, grad_cam=True, target_layer=-2, transparency=0.5): result = list() for index, row in mis_classified_df.iterrows(): image = np.asarray(Image.open(f'misclassified_examples/{index}.jpg')) output_image, confidence = classify_image(image, top_classes=1, grad_cam=grad_cam, target_layers=[4+target_layer], transparency=transparency) truth = row['ground_truths'] predicted = list(confidence)[0] if truth != predicted: result.append((output_image[0][0], f"{row['ground_truths']} / {predicted}")) if len(result) >= num_examples: break return result demo2 = gr.Interface( fn=show_mis_classifications, inputs=[ gr.Number(value=20, minimum=1, maximum=len(mis_classified_df), label="No. of missclassified Examples", precision=0), gr.Checkbox(label="Show GradCAM?", value=True), gr.Slider(-4, -1, value=-2, step=1, label="Which Layer?"), gr.Slider(0, 1, value=0.7, label="Transparency", step=0.1), ], outputs=[gr.Gallery(label="Missclassified Images (Truth / Predicted)", columns=4)] ) demo = gr.TabbedInterface([demo1, demo2], ["Examples", "Misclassified Examples"]) demo.launch(debug=True)