Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import traceback
|
5 |
+
from timeit import default_timer as timer
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
from torchvision import transforms
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
import boto3
|
13 |
+
|
14 |
+
# --- Setup ---
|
15 |
+
load_dotenv()
|
16 |
+
print("Starting application with debug info...")
|
17 |
+
print(f"Python version: {sys.version}")
|
18 |
+
print(f"Torch version: {torch.__version__}")
|
19 |
+
print(f"Device: {torch.device('cuda' if torch.cuda.is_available() else 'cpu')}")
|
20 |
+
|
21 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
try:
|
23 |
+
torch.set_default_device(device)
|
24 |
+
print(f"Default device set to: {device}")
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Error setting default device: {e}")
|
27 |
+
# Fall back to older method if needed
|
28 |
+
if torch.__version__ < '2.0.0':
|
29 |
+
print("Using older torch version method for device handling")
|
30 |
+
|
31 |
+
# --- Download from S3 (CPU models only) ---
|
32 |
+
def download_from_s3():
|
33 |
+
print("Attempting to download artifacts from S3...")
|
34 |
+
BUCKET_NAME = 'mybucket-emlo-mumbai'
|
35 |
+
ARTIFACTS = [
|
36 |
+
'kserve-ig/vegfruits-classifier-prod/pths/vegfruits_cpu.pt',
|
37 |
+
'kserve-ig/sports-classifier-prod/pths/sports_cpu.pt',
|
38 |
+
|
39 |
+
'kserve-ig/vegfruits-classifier-prod/index_to_name.json',
|
40 |
+
'kserve-ig/sports-classifier-prod/index_to_name.json',
|
41 |
+
]
|
42 |
+
os.makedirs("vegfruits", exist_ok=True)
|
43 |
+
os.makedirs("sports", exist_ok=True)
|
44 |
+
|
45 |
+
try:
|
46 |
+
aws_key = os.getenv("AWS_ACCESS_KEY_ID")
|
47 |
+
aws_secret = os.getenv("AWS_SECRET_ACCESS_KEY")
|
48 |
+
print(f"AWS credentials available: {bool(aws_key and aws_secret)}")
|
49 |
+
|
50 |
+
s3 = boto3.client(
|
51 |
+
"s3",
|
52 |
+
aws_access_key_id=aws_key,
|
53 |
+
aws_secret_access_key=aws_secret,
|
54 |
+
region_name="ap-south-1"
|
55 |
+
)
|
56 |
+
|
57 |
+
for artifact in ARTIFACTS:
|
58 |
+
if not os.path.exists(artifact):
|
59 |
+
artifact_extract = artifact.split("/")[-1]
|
60 |
+
if "vegfruits" in artifact:
|
61 |
+
local_name = "vegfruits"
|
62 |
+
if "sports" in artifact:
|
63 |
+
local_name = "sports"
|
64 |
+
s3.download_file(BUCKET_NAME, artifact, os.path.join(local_name, artifact_extract))
|
65 |
+
print(f"Successfully downloaded {artifact} as {os.path.join(local_name, artifact_extract)}")
|
66 |
+
else:
|
67 |
+
print(f"{artifact} already exists, skipping download")
|
68 |
+
except Exception as e:
|
69 |
+
print(f"Error during S3 download: {e}")
|
70 |
+
traceback.print_exc()
|
71 |
+
|
72 |
+
# --- Image Transform ---
|
73 |
+
transform = transforms.Compose([
|
74 |
+
transforms.Resize((224, 224)),
|
75 |
+
transforms.ToTensor(),
|
76 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
77 |
+
std=[0.229, 0.224, 0.225])
|
78 |
+
])
|
79 |
+
|
80 |
+
# --- Load models ---
|
81 |
+
def load_model(name):
|
82 |
+
print(f"Loading model: {name}")
|
83 |
+
# mybucket-emlo-mumbai/kserve-ig/vegfruits-classifier-prod/pths/
|
84 |
+
path = f"{name}/{name}_cpu.pt"
|
85 |
+
try:
|
86 |
+
if not os.path.exists(path):
|
87 |
+
print(f"ERROR: Model file not found at {path}")
|
88 |
+
return None
|
89 |
+
|
90 |
+
model = torch.jit.load(path)
|
91 |
+
print(f"Model loaded successfully from {path}")
|
92 |
+
model.to(device)
|
93 |
+
print(f"Model moved to {device}")
|
94 |
+
model.eval()
|
95 |
+
print(f"Model set to evaluation mode")
|
96 |
+
return model
|
97 |
+
except Exception as e:
|
98 |
+
print(f"Error loading model {name}: {e}")
|
99 |
+
traceback.print_exc()
|
100 |
+
return None
|
101 |
+
|
102 |
+
# --- Load class mappings ---
|
103 |
+
def load_classnames(name):
|
104 |
+
print(f"Loading class mappings for: {name}")
|
105 |
+
file_path = f"{name}/index_to_name.json"
|
106 |
+
try:
|
107 |
+
if not os.path.exists(file_path):
|
108 |
+
print(f"ERROR: Class mapping file not found at {file_path}")
|
109 |
+
return {}
|
110 |
+
|
111 |
+
with open(file_path) as f:
|
112 |
+
mapping = json.load(f)
|
113 |
+
print(f"Class mappings loaded successfully from {file_path}")
|
114 |
+
return mapping
|
115 |
+
# # Debug info
|
116 |
+
# print(f"Raw mapping sample (first 3 items): {list(mapping.items())[:3]}")
|
117 |
+
|
118 |
+
# # Convert keys to integers and create reverse mapping
|
119 |
+
# try:
|
120 |
+
# idx2lbl = {int(v): k for k, v in mapping.items()}
|
121 |
+
# print(f"Converted mapping sample (first 3 items): {list(idx2lbl.items())[:3]}")
|
122 |
+
# return idx2lbl, mapping
|
123 |
+
# except Exception as e:
|
124 |
+
# print(f"Error converting class mappings: {e}")
|
125 |
+
# # Fallback to string keys if int conversion fails
|
126 |
+
# return {v: k for k, v in mapping.items()}
|
127 |
+
except Exception as e:
|
128 |
+
print(f"Error loading class mappings for {name}: {e}")
|
129 |
+
traceback.print_exc()
|
130 |
+
return {}
|
131 |
+
|
132 |
+
# --- Predict functions ---
|
133 |
+
@torch.no_grad()
|
134 |
+
def predict(img, model, idx2lbl):
|
135 |
+
print(f"Prediction request received. Input type: {type(img)}")
|
136 |
+
|
137 |
+
# Handle non-image inputs
|
138 |
+
if img is None:
|
139 |
+
print("Received None image")
|
140 |
+
return {"No image provided": 1.0}, 0.0
|
141 |
+
|
142 |
+
if isinstance(img, bool):
|
143 |
+
print(f"Received boolean input: {img}")
|
144 |
+
return {"Boolean input received, expected image": 1.0}, 0.0
|
145 |
+
|
146 |
+
# Verify we have a valid image
|
147 |
+
if not isinstance(img, Image.Image):
|
148 |
+
print(f"WARNING: Input is not a PIL Image but {type(img)}")
|
149 |
+
try:
|
150 |
+
if hasattr(img, 'convert'):
|
151 |
+
print("Object has convert method, attempting to use as image")
|
152 |
+
else:
|
153 |
+
print("Object cannot be used as an image")
|
154 |
+
return {"Invalid image format": 1.0}, 0.0
|
155 |
+
except Exception as e:
|
156 |
+
print(f"Error checking image: {e}")
|
157 |
+
return {"Error processing input": 1.0}, 0.0
|
158 |
+
|
159 |
+
try:
|
160 |
+
print("Starting prediction process")
|
161 |
+
start = timer()
|
162 |
+
|
163 |
+
# Debug image properties
|
164 |
+
print(f"Image size: {img.size if hasattr(img, 'size') else 'unknown'}")
|
165 |
+
print(f"Image mode: {img.mode if hasattr(img, 'mode') else 'unknown'}")
|
166 |
+
|
167 |
+
# Transform image
|
168 |
+
print("Transforming image")
|
169 |
+
img_tensor = transform(img).to(device)
|
170 |
+
print(f"Image transformed to tensor of shape {img_tensor.shape}")
|
171 |
+
|
172 |
+
# Run model
|
173 |
+
print("Running model inference")
|
174 |
+
logits = model(img_tensor.unsqueeze(0))
|
175 |
+
print(f"Model output shape: {logits.shape}")
|
176 |
+
|
177 |
+
# Process output
|
178 |
+
print("Processing model output")
|
179 |
+
probs = torch.softmax(logits, dim=-1)
|
180 |
+
top5 = torch.topk(probs, min(5, probs.shape[1]))
|
181 |
+
|
182 |
+
# Create predictions dictionary
|
183 |
+
print("Creating predictions dictionary")
|
184 |
+
preds = {}
|
185 |
+
for i, (v, idx) in enumerate(zip(top5.values[0], top5.indices[0])):
|
186 |
+
idx_item = idx.item()
|
187 |
+
print(f"Processing top prediction {i+1}: idx={idx_item}, value={v.item():.4f}")
|
188 |
+
|
189 |
+
if str(idx_item) in idx2lbl:
|
190 |
+
print(f"inside predict - {idx_item}")
|
191 |
+
label = idx2lbl[str(idx_item)]
|
192 |
+
preds[label] = round(v.item(), 4)
|
193 |
+
print(f"Mapped to label: {label}")
|
194 |
+
else:
|
195 |
+
print(f"WARNING: Index {idx_item} not found in class mapping")
|
196 |
+
preds[f"Unknown-{idx_item}"] = round(v.item(), 4)
|
197 |
+
|
198 |
+
elapsed = round(timer() - start, 4)
|
199 |
+
print(f"Prediction completed in {elapsed}s")
|
200 |
+
return preds, elapsed
|
201 |
+
except Exception as e:
|
202 |
+
print(f"Prediction error: {e}")
|
203 |
+
traceback.print_exc()
|
204 |
+
return {"Error": 0.0}, 0.0
|
205 |
+
|
206 |
+
# --- App logic ---
|
207 |
+
def main():
|
208 |
+
print("Initializing application...")
|
209 |
+
|
210 |
+
try:
|
211 |
+
download_from_s3()
|
212 |
+
except Exception as e:
|
213 |
+
print(f"Error in S3 download: {e}")
|
214 |
+
traceback.print_exc()
|
215 |
+
|
216 |
+
print("Loading models and class mappings")
|
217 |
+
smodel = load_model("sports")
|
218 |
+
vfmodel = load_model("vegfruits")
|
219 |
+
sports_map = load_classnames("sports")
|
220 |
+
vegfruits_map = load_classnames("vegfruits")
|
221 |
+
|
222 |
+
def sports_fn(img):
|
223 |
+
print("\n--- Sports Classification Request ---")
|
224 |
+
print(f"Input type: {type(img)}")
|
225 |
+
if img is None:
|
226 |
+
print("No image provided")
|
227 |
+
return {"No image provided": 1.0}, 0.0
|
228 |
+
if isinstance(img, bool):
|
229 |
+
print(f"Received boolean: {img}")
|
230 |
+
return {"Boolean received (expected image)": 1.0}, 0.0
|
231 |
+
try:
|
232 |
+
return predict(img, smodel, sports_map)
|
233 |
+
except Exception as e:
|
234 |
+
print(f"Error in sports_fn: {e}")
|
235 |
+
traceback.print_exc()
|
236 |
+
return {"Error in sports classifier": 1.0}, 0.0
|
237 |
+
|
238 |
+
def veg_fn(img):
|
239 |
+
print("\n--- VegFruits Classification Request ---")
|
240 |
+
print(f"Input type: {type(img)}")
|
241 |
+
if img is None:
|
242 |
+
print("No image provided")
|
243 |
+
return {"No image provided": 1.0}, 0.0
|
244 |
+
if isinstance(img, bool):
|
245 |
+
print(f"Received boolean: {img}")
|
246 |
+
return {"Boolean received (expected image)": 1.0}, 0.0
|
247 |
+
try:
|
248 |
+
return predict(img, vfmodel, vegfruits_map)
|
249 |
+
except Exception as e:
|
250 |
+
print(f"Error in veg_fn: {e}")
|
251 |
+
traceback.print_exc()
|
252 |
+
return {"Error in vegfruits classifier": 1.0}, 0.0
|
253 |
+
|
254 |
+
print("Creating Gradio interfaces")
|
255 |
+
try:
|
256 |
+
sports_interface = gr.Interface(
|
257 |
+
fn=sports_fn,
|
258 |
+
inputs=gr.Image(type="pil"),
|
259 |
+
outputs=[
|
260 |
+
gr.Label(num_top_classes=5),
|
261 |
+
gr.Number(label="Prediction Time (s)")
|
262 |
+
],
|
263 |
+
title="Sports Classifier",
|
264 |
+
cache_examples=False
|
265 |
+
)
|
266 |
+
print("Sports interface created successfully")
|
267 |
+
|
268 |
+
veg_interface = gr.Interface(
|
269 |
+
fn=veg_fn,
|
270 |
+
inputs=gr.Image(type="pil"),
|
271 |
+
outputs=[
|
272 |
+
gr.Label(num_top_classes=5),
|
273 |
+
gr.Number(label="Prediction Time (s)")
|
274 |
+
],
|
275 |
+
title="VegFruits Classifier",
|
276 |
+
cache_examples=False
|
277 |
+
)
|
278 |
+
print("VegFruits interface created successfully")
|
279 |
+
|
280 |
+
demo = gr.TabbedInterface(
|
281 |
+
interface_list=[sports_interface, veg_interface],
|
282 |
+
tab_names=["Sports", "VegFruits"]
|
283 |
+
)
|
284 |
+
print("TabbedInterface created successfully")
|
285 |
+
|
286 |
+
print("Launching Gradio app...")
|
287 |
+
demo.launch(share=True)
|
288 |
+
except Exception as e:
|
289 |
+
print(f"Error creating Gradio interface: {e}")
|
290 |
+
traceback.print_exc()
|
291 |
+
|
292 |
+
if __name__ == "__main__":
|
293 |
+
main()
|