import json import os import sys import traceback from timeit import default_timer as timer import gradio as gr import torch from PIL import Image from torchvision import transforms from dotenv import load_dotenv import boto3 # --- Setup --- load_dotenv() print("Starting application with debug info...") print(f"Python version: {sys.version}") print(f"Torch version: {torch.__version__}") print(f"Device: {torch.device('cuda' if torch.cuda.is_available() else 'cpu')}") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") try: torch.set_default_device(device) print(f"Default device set to: {device}") except Exception as e: print(f"Error setting default device: {e}") # Fall back to older method if needed if torch.__version__ < '2.0.0': print("Using older torch version method for device handling") # --- Download from S3 (CPU models only) --- def download_from_s3(): print("Attempting to download artifacts from S3...") BUCKET_NAME = 'emlo-project' ARTIFACTS = [ 'kserve-ig/vegfruits-classifier-prod/pths/vegfruits_cpu.pt', 'kserve-ig/sports-classifier-prod/pths/sports_cpu.pt', 'kserve-ig/vegfruits-classifier-prod/index_to_name.json', 'kserve-ig/sports-classifier-prod/index_to_name.json', ] os.makedirs("vegfruits", exist_ok=True) os.makedirs("sports", exist_ok=True) try: aws_key = os.getenv("AWS_ACCESS_KEY_ID") aws_secret = os.getenv("AWS_SECRET_ACCESS_KEY") print(f"AWS credentials available: {bool(aws_key and aws_secret)}") s3 = boto3.client( "s3", aws_access_key_id=aws_key, aws_secret_access_key=aws_secret, region_name="ap-south-1" ) for artifact in ARTIFACTS: if not os.path.exists(artifact): artifact_extract = artifact.split("/")[-1] if "vegfruits" in artifact: local_name = "vegfruits" if "sports" in artifact: local_name = "sports" s3.download_file(BUCKET_NAME, artifact, os.path.join(local_name, artifact_extract)) print(f"Successfully downloaded {artifact} as {os.path.join(local_name, artifact_extract)}") else: print(f"{artifact} already exists, skipping download") except Exception as e: print(f"Error during S3 download: {e}") traceback.print_exc() # --- Image Transform --- transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # --- Load models --- def load_model(name): print(f"Loading model: {name}") # emlo-project/kserve-ig/vegfruits-classifier-prod/pths/ path = f"{name}/{name}_cpu.pt" try: if not os.path.exists(path): print(f"ERROR: Model file not found at {path}") return None model = torch.jit.load(path) print(f"Model loaded successfully from {path}") model.to(device) print(f"Model moved to {device}") model.eval() print(f"Model set to evaluation mode") return model except Exception as e: print(f"Error loading model {name}: {e}") traceback.print_exc() return None # --- Load class mappings --- def load_classnames(name): print(f"Loading class mappings for: {name}") file_path = f"{name}/index_to_name.json" try: if not os.path.exists(file_path): print(f"ERROR: Class mapping file not found at {file_path}") return {} with open(file_path) as f: mapping = json.load(f) print(f"Class mappings loaded successfully from {file_path}") return mapping # # Debug info # print(f"Raw mapping sample (first 3 items): {list(mapping.items())[:3]}") # # Convert keys to integers and create reverse mapping # try: # idx2lbl = {int(v): k for k, v in mapping.items()} # print(f"Converted mapping sample (first 3 items): {list(idx2lbl.items())[:3]}") # return idx2lbl, mapping # except Exception as e: # print(f"Error converting class mappings: {e}") # # Fallback to string keys if int conversion fails # return {v: k for k, v in mapping.items()} except Exception as e: print(f"Error loading class mappings for {name}: {e}") traceback.print_exc() return {} # --- Predict functions --- @torch.no_grad() def predict(img, model, idx2lbl): print(f"Prediction request received. Input type: {type(img)}") # Handle non-image inputs if img is None: print("Received None image") return {"No image provided": 1.0}, 0.0 if isinstance(img, bool): print(f"Received boolean input: {img}") return {"Boolean input received, expected image": 1.0}, 0.0 # Verify we have a valid image if not isinstance(img, Image.Image): print(f"WARNING: Input is not a PIL Image but {type(img)}") try: if hasattr(img, 'convert'): print("Object has convert method, attempting to use as image") else: print("Object cannot be used as an image") return {"Invalid image format": 1.0}, 0.0 except Exception as e: print(f"Error checking image: {e}") return {"Error processing input": 1.0}, 0.0 try: print("Starting prediction process") start = timer() # Debug image properties print(f"Image size: {img.size if hasattr(img, 'size') else 'unknown'}") print(f"Image mode: {img.mode if hasattr(img, 'mode') else 'unknown'}") # Transform image print("Transforming image") img_tensor = transform(img).to(device) print(f"Image transformed to tensor of shape {img_tensor.shape}") # Run model print("Running model inference") logits = model(img_tensor.unsqueeze(0)) print(f"Model output shape: {logits.shape}") # Process output print("Processing model output") probs = torch.softmax(logits, dim=-1) top5 = torch.topk(probs, min(5, probs.shape[1])) # Create predictions dictionary print("Creating predictions dictionary") preds = {} for i, (v, idx) in enumerate(zip(top5.values[0], top5.indices[0])): idx_item = idx.item() print(f"Processing top prediction {i+1}: idx={idx_item}, value={v.item():.4f}") if str(idx_item) in idx2lbl: print(f"inside predict - {idx_item}") label = idx2lbl[str(idx_item)] preds[label] = round(v.item(), 4) print(f"Mapped to label: {label}") else: print(f"WARNING: Index {idx_item} not found in class mapping") preds[f"Unknown-{idx_item}"] = round(v.item(), 4) elapsed = round(timer() - start, 4) print(f"Prediction completed in {elapsed}s") return preds, elapsed except Exception as e: print(f"Prediction error: {e}") traceback.print_exc() return {"Error": 0.0}, 0.0 # --- App logic --- def main(): print("Initializing application...") try: download_from_s3() except Exception as e: print(f"Error in S3 download: {e}") traceback.print_exc() print("Loading models and class mappings") smodel = load_model("sports") vfmodel = load_model("vegfruits") sports_map = load_classnames("sports") vegfruits_map = load_classnames("vegfruits") def sports_fn(img): print("\n--- Sports Classification Request ---") print(f"Input type: {type(img)}") if img is None: print("No image provided") return {"No image provided": 1.0}, 0.0 if isinstance(img, bool): print(f"Received boolean: {img}") return {"Boolean received (expected image)": 1.0}, 0.0 try: return predict(img, smodel, sports_map) except Exception as e: print(f"Error in sports_fn: {e}") traceback.print_exc() return {"Error in sports classifier": 1.0}, 0.0 def veg_fn(img): print("\n--- VegFruits Classification Request ---") print(f"Input type: {type(img)}") if img is None: print("No image provided") return {"No image provided": 1.0}, 0.0 if isinstance(img, bool): print(f"Received boolean: {img}") return {"Boolean received (expected image)": 1.0}, 0.0 try: return predict(img, vfmodel, vegfruits_map) except Exception as e: print(f"Error in veg_fn: {e}") traceback.print_exc() return {"Error in vegfruits classifier": 1.0}, 0.0 print("Creating Gradio interfaces") try: sports_interface = gr.Interface( fn=sports_fn, inputs=gr.Image(type="pil"), outputs=[ gr.Label(num_top_classes=5), gr.Number(label="Prediction Time (s)") ], title="Sports Classifier", cache_examples=False ) print("Sports interface created successfully") veg_interface = gr.Interface( fn=veg_fn, inputs=gr.Image(type="pil"), outputs=[ gr.Label(num_top_classes=5), gr.Number(label="Prediction Time (s)") ], title="VegFruits Classifier", cache_examples=False ) print("VegFruits interface created successfully") demo = gr.TabbedInterface( interface_list=[sports_interface, veg_interface], tab_names=["Sports", "VegFruits"] ) print("TabbedInterface created successfully") print("Launching Gradio app...") demo.launch(share=True) except Exception as e: print(f"Error creating Gradio interface: {e}") traceback.print_exc() if __name__ == "__main__": main()