HemaAM commited on
Commit
5c5fbf4
·
1 Parent(s): 2682c9b

Upload application file

Browse files
Files changed (1) hide show
  1. app.py +44 -0
app.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import gradio as gr
3
+ from detection import detect_objects
4
+ from config import PASCAL_CLASSES
5
+
6
+
7
+ def inference(
8
+ image: np.ndarray,
9
+ iou_thresh: float, thresh: float,
10
+ enable_grad_cam: str,
11
+ transparency: float,
12
+ ):
13
+ infer_output = detect_objects(image, iou_thresh, thresh, enable_grad_cam, transparency)
14
+ return infer_output
15
+
16
+
17
+ title = "YoloV3 for Pascal VOC Dataset"
18
+ description = f"Pytorch Implementation of YoloV3 model trained on Pascal VOC dataset with GradCAM \n Classes in pascol voc are: {', '.join(PASCAL_CLASSES)}"
19
+ example_images = [
20
+ ["images/001114.jpg", 0.7, 0.5, True, 0.6],
21
+ ["images/001133.jpg", 0.6, 0.5, True, 0.6],
22
+ ["images/001142.jpg", 0.65, 0.45, True, 0.6],
23
+ ["images/001147.jpg", 0.6, 0.5, True, 0.6],
24
+ ["images/001155.jpg", 0.7, 0.7, True, 0.6],
25
+ ]
26
+
27
+ demo = gr.Interface(
28
+ inference,
29
+ inputs=[
30
+ gr.Image(label="Input Image"),
31
+ gr.Slider(0, 1, value=0.5, label="IOU Threshold"),
32
+ gr.Slider(0, 1, value=0.4, label="Threshold"),
33
+ gr.Checkbox(label="Show Grad Cam"),
34
+ gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM"),
35
+ ],
36
+ outputs=[
37
+ gr.Gallery(rows=2, columns=1),
38
+ ],
39
+ title=title,
40
+ description=description,
41
+ examples=example_images,
42
+ )
43
+
44
+ demo.launch(debug=True)