Spaces:
Sleeping
Sleeping
upload modified model
Browse files
utils.py
CHANGED
@@ -3,11 +3,22 @@ import torch
|
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
import random
|
|
|
6 |
|
7 |
from pytorch_grad_cam.base_cam import BaseCAM
|
8 |
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
|
9 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def cells_to_bboxes(predictions, anchors, S, is_preds=True):
|
13 |
"""
|
@@ -142,9 +153,7 @@ def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"):
|
|
142 |
return bboxes_after_nms
|
143 |
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
def draw_prediction_boxes(image: np.ndarray, boxes: List[List], class_labels: List[str]) -> np.ndarray:
|
148 |
"""Plots predicted bounding boxes on the image"""
|
149 |
|
150 |
colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels]
|
@@ -250,10 +259,10 @@ class YoloGradCAM(BaseCAM):
|
|
250 |
# This gives you more flexibility in case you just want to
|
251 |
# use all conv layers for example, all Batchnorm layers,
|
252 |
# or something else.
|
253 |
-
|
254 |
targets,
|
255 |
eigen_smooth)
|
256 |
-
return self.aggregate_multi_layers(
|
257 |
|
258 |
def get_cam_image(self,
|
259 |
input_tensor,
|
|
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
import random
|
6 |
+
import config
|
7 |
|
8 |
from pytorch_grad_cam.base_cam import BaseCAM
|
9 |
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
|
10 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
11 |
|
12 |
+
def load_checkpoint(checkpoint_file, model, optimizer, lr):
|
13 |
+
print("=> Loading checkpoint")
|
14 |
+
checkpoint = torch.load(checkpoint_file, map_location=config.DEVICE)
|
15 |
+
model.load_state_dict(checkpoint["state_dict"])
|
16 |
+
optimizer.load_state_dict(checkpoint["optimizer"])
|
17 |
+
|
18 |
+
# If we don't do this then it will just have learning rate of old checkpoint
|
19 |
+
# and it will lead to many hours of debugging \:
|
20 |
+
for param_group in optimizer.param_groups:
|
21 |
+
param_group["lr"] = lr
|
22 |
|
23 |
def cells_to_bboxes(predictions, anchors, S, is_preds=True):
|
24 |
"""
|
|
|
153 |
return bboxes_after_nms
|
154 |
|
155 |
|
156 |
+
def draw_bounding_boxes(image: np.ndarray, boxes: List[List], class_labels: List[str]) -> np.ndarray:
|
|
|
|
|
157 |
"""Plots predicted bounding boxes on the image"""
|
158 |
|
159 |
colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels]
|
|
|
259 |
# This gives you more flexibility in case you just want to
|
260 |
# use all conv layers for example, all Batchnorm layers,
|
261 |
# or something else.
|
262 |
+
grad_cam_per_layer = self.compute_cam_per_layer(input_tensor,
|
263 |
targets,
|
264 |
eigen_smooth)
|
265 |
+
return self.aggregate_multi_layers(grad_cam_per_layer)
|
266 |
|
267 |
def get_cam_image(self,
|
268 |
input_tensor,
|
yolov3.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Implementation of YOLOv3 architecture
|
3 |
+
"""
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
import config as modelConfig
|
9 |
+
|
10 |
+
"""
|
11 |
+
Information about architecture config:
|
12 |
+
Tuple is structured by (filters, kernel_size, stride)
|
13 |
+
Every conv is a same convolution.
|
14 |
+
List is structured by "B" indicating a residual block followed by the number of repeats
|
15 |
+
"S" is for scale prediction block and computing the yolo loss
|
16 |
+
"U" is for upsampling the feature map and concatenating with a previous layer
|
17 |
+
"""
|
18 |
+
|
19 |
+
config = [
|
20 |
+
(32, 3, 1),
|
21 |
+
(64, 3, 2),
|
22 |
+
["B", 1],
|
23 |
+
(128, 3, 2),
|
24 |
+
["B", 2],
|
25 |
+
(256, 3, 2),
|
26 |
+
["B", 8],
|
27 |
+
(512, 3, 2),
|
28 |
+
["B", 8],
|
29 |
+
(1024, 3, 2),
|
30 |
+
["B", 4], # To this point is Darknet-53
|
31 |
+
(512, 1, 1),
|
32 |
+
(1024, 3, 1),
|
33 |
+
"S",
|
34 |
+
(256, 1, 1),
|
35 |
+
"U",
|
36 |
+
(256, 1, 1),
|
37 |
+
(512, 3, 1),
|
38 |
+
"S",
|
39 |
+
(128, 1, 1),
|
40 |
+
"U",
|
41 |
+
(128, 1, 1),
|
42 |
+
(256, 3, 1),
|
43 |
+
"S",
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
+
class CNNBlock(nn.Module):
|
48 |
+
@staticmethod
|
49 |
+
def get_activation_function(activation_type, param=0.1):
|
50 |
+
if activation_type == 'lrelu':
|
51 |
+
return nn.LeakyReLU(param)
|
52 |
+
elif activation_type == 'relu':
|
53 |
+
return nn.ReLU()
|
54 |
+
|
55 |
+
def __init__(self, in_channels, out_channels,
|
56 |
+
activation=modelConfig.ACTIVATION, bn_act=True,
|
57 |
+
**kwargs):
|
58 |
+
super(CNNBlock, self).__init__()
|
59 |
+
|
60 |
+
bias = not bn_act
|
61 |
+
layers = []
|
62 |
+
|
63 |
+
layers.append(nn.Conv2d(in_channels, out_channels, bias=bias, **kwargs))
|
64 |
+
|
65 |
+
|
66 |
+
if bn_act:
|
67 |
+
layers.append(nn.BatchNorm2d(out_channels))
|
68 |
+
layers.append(self.get_activation_function(activation))
|
69 |
+
|
70 |
+
self.layers = nn.Sequential(*layers)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
return self.layers(x)
|
74 |
+
|
75 |
+
|
76 |
+
class ResidualBlock(nn.Module):
|
77 |
+
def __init__(self, channels, use_residual=True, num_repeats=1):
|
78 |
+
super(ResidualBlock, self).__init__()
|
79 |
+
self.layers = nn.ModuleList()
|
80 |
+
for repeat in range(num_repeats):
|
81 |
+
self.layers += [
|
82 |
+
nn.Sequential(
|
83 |
+
CNNBlock(channels, channels // 2, kernel_size=1),
|
84 |
+
CNNBlock(channels // 2, channels, kernel_size=3, padding=1),
|
85 |
+
)
|
86 |
+
]
|
87 |
+
self.use_residual = use_residual
|
88 |
+
self.num_repeats = num_repeats
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
for layer in self.layers:
|
92 |
+
if self.use_residual:
|
93 |
+
x = x + layer(x)
|
94 |
+
else:
|
95 |
+
x = layer(x)
|
96 |
+
return x
|
97 |
+
|
98 |
+
|
99 |
+
class ScalePrediction(nn.Module):
|
100 |
+
def __init__(self, in_channels, num_classes):
|
101 |
+
super(ScalePrediction, self).__init__()
|
102 |
+
self.pred = nn.Sequential(
|
103 |
+
CNNBlock(in_channels, 2 * in_channels, kernel_size=3, padding=1),
|
104 |
+
CNNBlock(2 * in_channels, (num_classes + 5) * 3, kernel_size=1, bn_act=False),
|
105 |
+
)
|
106 |
+
self.num_classes = num_classes
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
x = self.pred(x)
|
110 |
+
return x.reshape(x.shape[0], 3,
|
111 |
+
self.num_classes + 5, x.shape[2],
|
112 |
+
x.shape[3]).permute(0, 1, 3, 4, 2)
|
113 |
+
|
114 |
+
|
115 |
+
class YOLOv3(nn.Module):
|
116 |
+
def __init__(self, in_channels=3, num_classes=80):
|
117 |
+
super(YOLOv3, self).__init__()
|
118 |
+
self.num_classes = num_classes
|
119 |
+
self.in_channels = in_channels
|
120 |
+
self.layers = self._create_conv_layers()
|
121 |
+
|
122 |
+
def forward(self, x):
|
123 |
+
outputs = [] # for each scale
|
124 |
+
route_connections = []
|
125 |
+
for layer in self.layers:
|
126 |
+
x_ = layer(x)
|
127 |
+
if isinstance(layer, ScalePrediction):
|
128 |
+
outputs.append(x_)
|
129 |
+
continue
|
130 |
+
|
131 |
+
x = x_
|
132 |
+
if isinstance(layer, ResidualBlock) and layer.num_repeats == 8:
|
133 |
+
route_connections.append(x)
|
134 |
+
|
135 |
+
elif isinstance(layer, nn.Upsample):
|
136 |
+
x = torch.cat([x, route_connections[-1]], dim=1)
|
137 |
+
route_connections.pop()
|
138 |
+
return outputs
|
139 |
+
|
140 |
+
def _create_conv_layers(self):
|
141 |
+
layers = nn.ModuleList()
|
142 |
+
in_channels = self.in_channels
|
143 |
+
|
144 |
+
for module in config:
|
145 |
+
if isinstance(module, tuple):
|
146 |
+
out_channels, kernel_size, stride = module
|
147 |
+
layers.append(
|
148 |
+
CNNBlock(
|
149 |
+
in_channels,
|
150 |
+
out_channels,
|
151 |
+
kernel_size=kernel_size,
|
152 |
+
stride=stride,
|
153 |
+
padding=1 if kernel_size == 3 else 0,
|
154 |
+
)
|
155 |
+
)
|
156 |
+
in_channels = out_channels
|
157 |
+
|
158 |
+
elif isinstance(module, list):
|
159 |
+
num_repeats = module[1]
|
160 |
+
layers.append(ResidualBlock(in_channels, num_repeats=num_repeats,))
|
161 |
+
|
162 |
+
elif isinstance(module, str):
|
163 |
+
if module == "S":
|
164 |
+
layers += [
|
165 |
+
ResidualBlock(in_channels, use_residual=False, num_repeats=1),
|
166 |
+
CNNBlock(in_channels, in_channels // 2, kernel_size=1),
|
167 |
+
ScalePrediction(in_channels // 2, num_classes=self.num_classes),
|
168 |
+
]
|
169 |
+
in_channels = in_channels // 2
|
170 |
+
|
171 |
+
elif module == "U":
|
172 |
+
layers.append(nn.Upsample(scale_factor=2),)
|
173 |
+
in_channels = in_channels * 3
|
174 |
+
return layers
|