from typing import List import cv2 import torch import numpy as np import gradio as gr import config as modelConfig from pytorch_grad_cam.utils.image import show_cam_on_image from yolov3 import YOLOv3 import utils from utils import cells_to_bboxes, non_max_suppression, draw_bounding_boxes, YoloGradCAM model = YOLOv3(num_classes=len(modelConfig.PASCAL_CLASSES)) optimizer = torch.optim.Adam(model.parameters(), lr=0.00072/100, weight_decay=1e-4) utils.load_checkpoint("checkpoint.pth.tar", model, optimizer, 0.00072/100) scaled_anchors = ( torch.tensor(modelConfig.ANCHORS) * torch.tensor(modelConfig.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2) ).to(modelConfig.DEVICE) yolo_grad_cam = YoloGradCAM(model=model, target_layers=[model.layers[-2]], use_cuda=False) @torch.inference_mode() def detect_objects(image: np.ndarray, iou_thresh: float = 0.5, thresh: float = 0.4, enable_grad_cam: bool = False, transparency: float = 0.5) -> List[np.ndarray]: transformed_image = modelConfig.transforms(image=image)["image"].unsqueeze(0) #transformed_image = transformed_image.cuda() output = model(transformed_image) bboxes = [[] for _ in range(1)] for i in range(3): batch_size, A, S, _, _ = output[i].shape anchor = scaled_anchors[i] boxes_scale_i = cells_to_bboxes( output[i], anchor, S=S, is_preds=True ) for idx, (box) in enumerate(boxes_scale_i): bboxes[idx] += box nms_boxes = non_max_suppression( bboxes[0], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint", ) plot_img_with_bboxes = draw_bounding_boxes(image.copy(), nms_boxes, class_labels=modelConfig.PASCAL_CLASSES) if not enable_grad_cam: return [plot_img_with_bboxes] grayscale_cam = yolo_grad_cam(transformed_image, scaled_anchors)[0, :, :] img = cv2.resize(image, (416, 416)) img = np.float32(img) / 255 grad_cam_image = show_cam_on_image(img, grayscale_cam, use_rgb=True, image_weight=transparency) return [plot_img_with_bboxes, grad_cam_image] def inference( image: np.ndarray, iou_thresh: float, thresh: float, enable_grad_cam: str, transparency: float, ): results = detect_objects(image, iou_thresh, thresh, enable_grad_cam, transparency) return results title = "Object detection application using YoloV3 Model" description = f"Object detection application using pre-trained YoloV3 model for Pascal VOC dataset. This app has GradCAM option also. \n The 20 classes in Pascal voc dataset are : {', '.join(modelConfig.PASCAL_CLASSES)}" examples = [ ["images/000811.jpg", 0.6, 0.6, True, 0.6], ["images/000830.jpg", 0.5, 0.5, True, 0.6], ["images/000842.jpg", 0.6, 0.6, True, 0.6], ["images/001114.jpg", 0.4, 0.5, True, 0.6], ["images/001133.jpg", 0.7, 0.7, True, 0.6], ["images/001155.jpg", 0.7, 0.69, True, 0.6], ["images/000008.jpg", 0.66, 0.69, True, 0.6], ["images/000031.jpg", 0.6, 0.6, True, 0.6], ["images/000175.jpg", 0.6, 0.6, True, 0.6], ] demo = gr.Interface( inference, inputs=[ gr.Image(label="Input Image"), gr.Slider(0, 1, value=0.5, label="IOU Threshold"), gr.Slider(0, 1, value=0.4, label="Threshold"), gr.Checkbox(label="Show Grad Cam"), gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM"), ], outputs=[ gr.Gallery(rows=2, columns=1), ], title=title, description=description, examples=examples, ) demo.launch(debug=True)