File size: 2,014 Bytes
4fec0c7
 
 
 
 
3082205
4fec0c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load tokenizer and model (simulating EvoTransformer with GPT-2-like architecture)
model_name = "username/evo_finetuned"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model.eval()

# Mock EvoTransformer architecture traits
architecture = {
    "layers": 6,
    "heads": 8,
    "ffn_dim": 2048,
    "parameters": "58M"
}

def generate_response(user_input, max_length=100):
    # Tokenize input with a conversational prompt
    prompt = f"User: {user_input} Assistant: "
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
    input_ids = inputs["input_ids"]

    # Generate response
    with torch.no_grad():
        outputs = model.generate(
            input_ids,
            max_length=max_length,
            num_return_sequences=1,
            do_sample=True,
            top_p=0.9,
            temperature=0.7,
            pad_token_id=tokenizer.eos_token_id
        )
    
    # Decode response
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    response = response[len(prompt):].strip()
    
    # Format output with architecture details
    arch_info = (
        f"Model Architecture:\n"
        f"- Layers: {architecture['layers']}\n"
        f"- Attention Heads: {architecture['heads']}\n"
        f"- FFN Dimension: {architecture['ffn_dim']}\n"
        f"- Parameters: {architecture['parameters']}"
    )
    
    return f"**Response**: {response}\n\n**{arch_info}**"

# Gradio interface
iface = gr.Interface(
    fn=generate_response,
    inputs=gr.Textbox(lines=2, placeholder="Type your message here..."),
    outputs="markdown",
    title="EvoTransformer Chat Demo",
    description="Chat with a simplified EvoTransformer model, designed to evolve Transformer architectures. Enter a message to get a response and view model details."
)

if __name__ == "__main__":
    iface.launch()