Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments | |
from datasets import load_dataset | |
# Load model and tokenizer | |
model_name = "distilgpt2" | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
tokenizer.pad_token = tokenizer.eos_token | |
# Load dialogue dataset | |
dataset = load_dataset("HuggingFaceH4/ultrachat", split="train[:1%]") # Use 1% for demo | |
# Preprocess dataset | |
def preprocess(examples): | |
prompts = [f"User: {ex['prompt']} Assistant: {ex['response']}" for ex in examples] | |
return tokenizer(prompts, truncation=True, padding="max_length", max_length=512) | |
tokenized_dataset = dataset.map(preprocess, batched=True) | |
# Training arguments | |
training_args = TrainingArguments( | |
output_dir="./evo_finetuned", | |
per_device_train_batch_size=4, | |
num_train_epochs=3, | |
save_steps=1000, | |
save_total_limit=2, | |
) | |
# Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_dataset, | |
) | |
# Fine-tune | |
trainer.train() | |
# Save model | |
model.save_pretrained("evo_finetuned") | |
tokenizer.save_pretrained("evo_finetuned") |