Spaces:
Sleeping
Sleeping
Create retriever.py
Browse files- retriever.py +40 -0
retriever.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import faiss
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import pdfplumber
|
6 |
+
|
7 |
+
model = SentenceTransformer("all-MiniLM-L6-v2") # small, fast
|
8 |
+
index = None
|
9 |
+
doc_chunks = []
|
10 |
+
|
11 |
+
def read_pdf(path):
|
12 |
+
with pdfplumber.open(path) as pdf:
|
13 |
+
return "\n".join([page.extract_text() or "" for page in pdf.pages])
|
14 |
+
|
15 |
+
def chunk_text(text, chunk_size=250):
|
16 |
+
words = text.split()
|
17 |
+
return [" ".join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)]
|
18 |
+
|
19 |
+
def build_index_from_file(file_path):
|
20 |
+
global index, doc_chunks
|
21 |
+
ext = os.path.splitext(file_path)[-1].lower()
|
22 |
+
|
23 |
+
if ext == ".pdf":
|
24 |
+
text = read_pdf(file_path)
|
25 |
+
else:
|
26 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
27 |
+
text = f.read()
|
28 |
+
|
29 |
+
doc_chunks = chunk_text(text)
|
30 |
+
embeddings = model.encode(doc_chunks, convert_to_numpy=True)
|
31 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
32 |
+
index.add(np.array(embeddings))
|
33 |
+
|
34 |
+
def retrieve(query, top_k=3):
|
35 |
+
if index is None:
|
36 |
+
return ""
|
37 |
+
|
38 |
+
query_vec = model.encode([query])
|
39 |
+
D, I = index.search(np.array(query_vec), top_k)
|
40 |
+
return "\n\n".join([doc_chunks[i] for i in I[0]])
|